
MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 1

MC5305 - OBJECT ORIENTED ANALYSIS AND DESIGN

UNIT I INTRODUCTION 9

An overview – Object basics – Object state and properties – Behavior – Methods – Messages – Information hiding – Class

hierarchy – Relationships – Associations – Aggregations- Identity – Dynamic binding – Persistence – Meta classes –

Object oriented system development life cycle.

UNIT II METHODOLOGY AND UML 9

Introduction – Survey – Rumbaugh, Booch, Jacobson methods – Unified modelling language – Static and Dynamic

models – Rational Rose Suite - UML diagrams – Static diagram: Class diagram – Use case diagrams – Behaviour

Diagram : Interaction diagram – State chart diagram – Activity diagram - Implementation diagram: Component

diagram – Deployment diagram – example - Design of online railway reservation system using UML diagrams -

Dynamic modelling – Model organization – Extensibility

UNIT III OBJECT ORIENTED ANALYSIS 9

Identifying Use case – Business object analysis – Use case driven object oriented analysis – Use case model –

Documentation – Classification – Identifying object, relationships, attributes, methods – Super-sub class – A part of

relationships Identifying attributes and methods – Object responsibility – construction of class diagram for generalization,

aggregation – example – vehicle class.

UNIT IV OBJECT ORIENTED DESIGN 9

Design process and benchmarking – Axioms – Corollaries – Designing classes – Class visibility – Refining attributes –

Methods and protocols – Object storage and object interoperability – Databases – Object relational systems – Designing

interface objects – Macro and Micro level processes – The purpose of a view layer interface-OOUI - MVC Architectural

Pattern and Design – Designing the system.

UNIT V CASE TOOLS 9

 Railway domain : Platform assignment system for the trains in a railway station - Academic domain : Student Marks

Analysing System - ATM system - Stock maintenance - Quiz System - E-mail Client system - Cryptanalysis – Health

Care Systems. Use Open source CASE Tools: StarUML/ UML Graph for the above case studies.

REFERENCES:

1. Ali Bahrami, “Object Oriented System Development”, McGraw Hill International Edition, 2008

2. Brahma Dathan, Sarnath Ramnath, “Object-Oriented Analysis, Design and Implementation”, Universities Press, 2010

3. Bernd Bruegge, Allen H. Dutoit, Object Oriented Software Engineering using UML, Patterns and Java, Pearson 2004

4. Craig Larman, Applying UML and Patterns – An Introduction to Object-Oriented Analysis and Design and Iterative

Development” , 3rd Edition, Pearson Education, 2005

5. Grady Booch, James Rumbaugh, Ivar Jacobson, “The Unified Modeling Language User Guide”, Addison Wesley Long

man, 1999

6. Martin Fowler, “UML Distilled A Brief Guide to Standard Object Modeling Language”, 3rd Edition, Addison Wesley,

2003

7. Russ Miles, Kim Hamilton, “Learning UML 2.0”, O‟Reilly, 2008

8. http://staruml.sourceforge.net/docs/StarUML_5.0_Developer_Guide.pdf

9. http://www.spinellis.gr/umlgraph/doc/index.html

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 2

QUESTION BANK

PART – A - UNIT – I

1. What is an Object, state of the object? Give an example. (Dec2016, May 2017)

Object is a real world entity. Software is a collection of discrete objects that encapsulate their data and logic /

functionalities to model real world objects. Each object has attributes (data) and method (function). Example,

Human being, table, chair, computer, book.
 The state is the set of values that describes an object at a specific point in time.
 It is represented by state symbols and the transitions are represented by a time
 Such transitions are represented by arrows connecting the state symbols.
 A state is represented by a circle.

2. What is inheritance?

 Inheritance is a relationship between classes where one class is the parent of another class (derived)

class.

 Inheritance allows classes to share and reuse behaviours and attributes.

 Reuse what we already have.
 Inheritance is the property of object-oriented systems that allows objects to be built from other

objects.
 Inheritance allows explicitly taking advantage of the commonality of objects when constructing

new classes.
 The parent class is also known as the base class or super class.

3. What is data abstraction?
 Using this data abstraction mechanism, it is possible to create new, higher-level, and more

specialized data abstraction.
 You can work directly in the language, manipulating the kind of "objects" required by you or

your application, without having to constantly struggle to bridge the gap between how to
conceive of these objects and how to write the code to represent them.

4. Why do you use object orientation? List out the benefits of object orientation.

 It adapts to :Changing requirements, Easier to maintain, More robust, Promote greater design,

 Code reuse, Higher level of abstraction, Seamless transition among different phases of software

 development, Encouragement of good programming techniques, Promotion of reusability

 Benefits of object orientation.

 Faster development, Reusability ,Increased quality, Object technology, Raising the level of

abstraction

5. What is encapsulation and information hiding?

Information hiding is a principle of hiding internal data and procedures of an object. By providing an

interface to each object in such a way as to reveal as little as possible about inner workings .Encapsulation

protects the data from corruption .

6. What is the difference between an object's methods and an object's attribute?

Attribute / Property Method

State of an object Implementation behavior of an object

Description of an object represented

in a programming language

It is a function or procedure for a class

Represented by data type Access the internal state of an object of that

class to perform operations.

Ex: Student – Object, Reg-No – Attribute, Compute-Grade() - Method

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 3

7. What is an association? Differentiate between association and cardinality.(May 2016)

Association represents the relationship between objects and classes. For example, in the statement "a pilot

can fly planes", is an association. Association is bi-directional; that means they can be reversed in both

directions.
Association Cardinality

Represents relationships among objects Represents mapping among entities

Can be represented in the form of
multiplicity as 1 ..1, 1..*. *..1, *..*

Establishes 1 ..1, 1 .. M, M ..1, M ..M
relationship between entities of common
interest

A null association can be defined as 0 .. 1 It is not possible.

 8. What is the difference between a method and a message?

Message Method

Objects perform operations in

response to messages.

Behavior of an object

It is a function or procedure for a class

Access the internal state of an object of

that class to perform operations.

Ex: Compute-Grade() - Method Call Compute-Grade() - Message

 9. What is Polymorphism? Why is polymorphism useful? Give an example.

Polymorphism allows us to write generic, reusable code. The same operation may behave differently

 on different classes. Polymorphism as the relationship of objects of many different classes by some common

class; thus, any of the objects designated by this name is able to respond to some common set of operations in a

different way. Since no assumption is made about the classes of an object that represents a message, fewer

dependencies are needed in the code and, therefore, maintenance is easier. Example : Compute-Payroll is a function,

it behave differently in office-worker, manager, production-worker classes

10. What is a formal class or abstract class, meta class? (Dec 2016, May2017)

Formal or abstract classes have no instances but define the common behaviors that can be inherited by more

specific classes. For example, shape is an abstract class which can be inherited by classes such as circle, line,

triangle, polygon, rectangle, square, hexagon and pentagon.
A Meta-Class is a class' class. If a class is an object, then that object must have a class. Compilers provide an
easyway to picture Meta-Classes. All objects are instances of a class. All classes are instances of a meta class.
The Meta-Class can also provide services to application programs, such as returning a set of all methods,
instances or parents for review
 11. How does object-oriented development eliminate duplication?
 Duplication occurs when using a procedural language, since there is no concept of hierarchy
 and inheriting behaviour. An object-oriented system eliminates duplicated effort by allowing classes
 to share and reuse behaviors.

12. Differentiate object oriented and object based technology.

Object Based Technology Object Oriented Technology

Object-Based technology does not

support inheritance and polymorphism.

Object-oriented technology may include

features such as data abstraction, encapsulation,

messaging, modularity, polymorphism, and

inheritance

Ex: Ada 83 and Modula-2 Ex: JAVA

http://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Module_%28programming%29
http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/wiki/Inheritance_%28computer_science%29

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 4

13. List the object oriented system development activities, various types of prototypes.

 Object oriented analysis , Object oriented design, Prototyping, Component based development

 Incremental testing

The various types of prototypes are

 Horizontal prototype , Vertical prototype, Analysis prototype, Domain prototype

14. How are objects identified in an object-oriented system? How are the classes organized in an
object-oriented environment?

An object's identity comes into being when the object is created and continues to represent that object
from then on. This identity never is confused with another object, even if the original object has been
deleted. The identity name never changes even if all the properties of object change—it is independent of
the object's state.
Object identity often is implemented through some kinds of object identifier or unique identifier.
An object-oriented system organizes classes into a subclass-super class hierarchy.
Different properties and behaviours are used as the basis for making distinctions between classes and
subclasses. At the top of the class hierarchy are the most general classes and at the bottom are the most
specific. A subclass inherits all the properties and methods defined in the super class.

15. What is the lifetime of an object and how can you extend the lifetime of an object?
Objects have a lifetime. They are explicitly created and can exist for a period of time that, traditionally, has

been the duration of the process in which they were created. From a language perspective, this characteristic
is called object persistence. An object can persist beyond application session boundaries, during which the
object is stored in a file or a database form.

17. What is object modeling? Differentiate correspondence and correctness measures

 Object modeling is a process by which the logical objects in the real world are represented by actual objects in the

program. UML class diagram also referred to as object modeling, which is static analysis diagram and it is used to

model objects and their relationships.

The following points to be explained the difference between the correspondence and correctness measures

Correspondence Correctness

Correspondence measures how well the delivered

system corresponds to the needs of the

operational environment.

Correctness measures the

consistency of the product

requirements with respect to the

design specification.

18. Why is reusability important? How does object oriented software development promote
 reusability?

Reusability is important because it provides increased reliability, reduced time and cost for development.

OOSD promotes reusability by

 Information hiding

 Conformance to naming standard

 Creation and administration of an object repository

 Encouragement by strategic management of reuse as opposed to constant redevelopment

 Establishing targets for a percentage of the objects in the product to be reused.
19. How would you identify attributes, methods? Define meta class

 The following questions are used to identify system’s responsibilities.
 What information about an object should be kept track of?
 What services must a class provide?
 Answering the first question will help us to identify the attribute of the class.

20. What is the importance of layered Architecture in object Oriented Development?(15)

An approach to software development that allows us to create objects that represent tangible elements of the

business. Independent of how they are represented to the user through an interface or physically stored in the

database. Consists of view or user interface, business and access layers.

 21. Describe the role of object behavior in Object Oriented Development. (May 2015)
Object behavior is described in methods/procedures. Method is a function/procedure that is defined for a
class(i.e.,) it accesses the internal state of a.n object Behavior is a collection of methods that describes what an

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 5

object is capable of doing. The object called as the receiver is the one on which method operates. Methods
encapsulate the behavior of the object. Methods provide interfaces to the object and hide any of the internal
structure and state maintained by the object.
22. What is object oriented analysis and design goals?(May 2016)
Object-oriented analysis and design (OOAD) is a popular technical approach for analyzing, designing
application, system, or business by applying the object-oriented paradigm and visual modeling throughout the
development life cycles to foster better stakeholder communication and product quality.

UNIT – II

1. Mention the parts of Object Modeling Techniques in Rumbaugh methodology and its role for
 describing the system. / What is an object model? What are the other OMT models?

 The object model is going to be a description of the objects and their structures. It includes identity of

the objects, relationship to other objects, attributes and their operations.

 It is represented using an object diagram, which consists of classes interconnected by association lines

that establish relationships among the classes.

A dynamic model : presented by the state diagrams and event flow diagrams
A functional model : presented by data flow and constraints.
It is a representation of flow of data between different processes in a business.
The process is any function being performed, data flow shows the direction of data element movement.

2. Define an Abstract class. (Dec 2016)

 Abstract classes allow you to re-use common implementation details across a set of classes that share a

common ancestor. Abstract classes are much like Interfaces in that they both provide a template of what

methods should be within the inheriting class, but there are big differences: - Interfaces only define

names/types of methods that need to exist in an inheriting class, while abs-classes can have complete

default code of method and just the details may need to be over-ridden. abstract classes are more

common in that they can provide default implementation of code right away.

3. What are the phases of OMT?

 Analysis: This results in the object and dynamic and functional models. The object model describes the
structure objects in a system and is represented by means of an object diagram.

 System Design: The results are a structure of the basic architecture of the system.

 The object model describes the structure objects in a system

 It is represented by means of an object diagram.

 Object Design:

 It produces a detailed design consisting of objects, dynamic, functional models.

 Implementation: This activity produces reusable, extendible and robust comprehensive code.

4. What do you mean by a method, methodology and process? List the diagrams in Booch method.

 A method is an implementation of an objects behavior.
 A model is an abstract of a system constructed to understand the system prior to building or modifying

it.
 Methodology is a set of methods, models and rules for developing systems based on any set of

standards.
 The process is defined as any operation being performed.

 Diagrams in Booch method

1. Class diagrams 2. Object diagrams 3. State transition diagrams 4. Module diagrams

5. Process diagrams 6. Interaction diagrams.

5. List the steps in Macro development process. State the reason for using it.

 Conceptualization where the core requirements of the system are outlined
 Analysis and the development model which focuses on the class diagrams,

Design or creation of the computer architecture to establish relationships between the' classes
 Evolution or implementation to produce a code
 Maintenance to add new requirements and to eliminate the bugs.
 Each macro development process has its own micro development process which aims at

o Identifying class and objects
o Identifying class and object semantics.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 6

o Identifying class and object relationships
o Identifying class and object interfaces and implementation

6. What is the strength of Jacobson Methodology?

 The strength of the Jacobson methodology is that it entire life cycle and stress trace ability between the

different phases, both forward and backward.

 This enables the reuse of analysis and design work, reducing development time and memory significantly.

7. Define Pattern. Why do you use it?

 A pattern is instructive information that captures the essential structure and insight of a successful family of

proven solutions to a recurring problem that arises within certain context and system of forces.

 Reasons

 It solves a problem. Patterns capture solutions, not just abstract principles or strategies.
 It is proven concept. Patterns capture solutions with a track record, not theories or speculations.
 The solution is not obvious. The best patterns generate a solution to a problem indirectly a necessary

approach for the most difficult problems of design.
 It describes a relationship. Patterns do not just describes modules, but describe deeper system structures

and mechanisms.
 The pattern has a significant human component. All software servers' human comfort or quality of life.

8. Define Framework. List the template of a pattern.

A framework is a way of presenting a generic solution to a problem that can be applied to all levels in a

development.
Pattern Template

Name Probe / Also known as Context Forces

Solution Examples Resulting context Rationale

Related Pattern Known uses Proven solution

.

9. Write the differences between design patterns and frameworks.

Design Patterns Frameworks

is instructive information that captures

the essential structure and insight of a

successfully family of proven solutions

to a recurring problem that arises within

certain context and system offered

a way of presenting a generic solution to a

problem that can be applied to all levels in a

development.

 Pattern solves a problem, is a proven

concept, describes relationships,

It represents a set of classes that make up a

reusable design for a specific class of

software.

It has significant human component.

It partitions the design into abstract classes

and also defines relationships between them.

Design patterns are less specialized

than frameworks

They emphasize design reuse over code

reuse.

Only examples of a pattern can be

included in code

Frameworks can be included in code

Design patterns have to be
implemented each time they are used.

Frameworks can be written down in

programming languages and executed, reused

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 7

 directly.

Design patterns cannot have
frameworks

Frameworks contain design patterns

10. Differentiate static and dynamic model.

Static Model Dynamic Model

A static model can be viewed as

“snapshot” of a system’s parameters

at rest or at a specific point in time.

Dynamic modeling can be viewed as a

collection of procedures or behaviors that,

taken together, reflect the behavior of a system

over time.

used to specify structure of the
objects that exist in the problem
domain

Refers representing the object
interactions during runtime.

These are expressed using class,
object and USECASE diagrams

represented by sequence, activity, collaboration
and state chart diagrams

Time Independent view of the
system.

E.g., Class has same number of
students in a year.

Time dependent view of the system

E.g. ATM can accept card only when it is in
ready state.

includes Class Diagram, Object
diagram Component Diagram,
Deployment Diagram

Includes Use-Case Diagram, Interaction
Diagram, State Diagram, Activity diagram

The classes structure and their

relationships to each other frozen in

time are examples of static models

For example, an order interacts with inventory

to determine product availability

11. List the nine graphical diagrams.

 The UML defines nine graphical diagrams:

1. Class diagram (static)

2. Use-case diagram

3. Behavior diagrams (dynamic):

3.1 Interaction diagram

3.1.1 Sequence diagram

3.1.2 Collaboration diagram

3.2 State chart diagram

3.3 Activity diagram

4. Implementation diagram

4.1 Component diagram

4.2 Deployment diagram

12. What is a Qualifier? What is meant by Multiplicity?

 A qualifier is an association attribute. For example, a person object may be associated to a Bank object.

 An attribute of this association is the account#.

 The account# is the qualifier of this association.

 A qualifier can be shown as a small rectangle attached to the end of an association path, between the

final path segment and the symbol of the class to which it connects.

 The qualifier rectangle is part of the association path, not part of the class.

 The rectangle usually is smaller than the attached class rectangle.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 8

 Multiplicity specifies the range of allowable associated classes.

 It is given for roles within associations, parts within compositions, repetitions, and other purpose.

 A multiplicity specification is as a text string comprising a period-separated sequence of integer intervals,

where an interval represents a range of integers in this format: " lower bound.. upper bound".

13. What is a class diagram?

 A class diagram is a collection of static modeling elements such as classes and their relationships,

connected as a graph to each other and to their contents.

 For example, the things that exist, their internal structures and their relationships to other classes can be

represented using this diagram.

14. What is a factory method pattern?

 The factory method pattern is a creational pattern which uses factory methods to deal with the problem of

creating objects without specifying the exact class of object that will be created.

 This is done by creating objects via calling a factory method—either specified in an interface and

implemented by child classes, or implemented in a base class and optionally overridden by derived

classes—rather than by calling a constructor.

15. Compare Abstract factory and Factory method.(May 2017)

Factory Method

 It contains one method to produce one type of product related to its type.

 It is better than a Simple factory because the type is deferred to a sub-class.

Abstract Factory

 It produces a family of types that are related.

 It is noticeably different than a factory method as it has more than one method of types it produces.

16. What are the types of mediator pattern?

 Concrete Mediator: Implements the Mediator interface and coordinates communication between

Colleague objects.

 It is aware of all the Colleagues and their purpose with regards to inter communication.

Concrete Colleague - Communicates with other Colleagues through its Mediator.

17. What is meant by memento pattern?

The memento pattern is a software design pattern that provides the ability to restore an object to its previous

state (undo via rollback).

The memento pattern is implemented with three objects: the originator, a care taker and a memento.

The originator is some object that has an internal state. he care taker is going to do something to the

originator, but wants to be able to undo the change.

The care taker first asks the originator for a memento object.

Then it does whatever operation (or sequence of operations) it was going to do.
18. What is an use case? What are some of the ways that use cases can be described? (Dec 2016)

 Use Case is a scenario depicting a user system interaction.
 It begins with the user of the system issuing a sequence of interrelated events. Use cases are described

as:
o Nonformal text with no clear flow of events.
o Text, easy to read but with a clear flow of events.
o Formal style using pseudo code.

 A use case must contain
o How and when it begins and ends.
o The interaction between the use case and its actors, including when it occurs and what is exchanged.
o How and when it needs the data stored in the system arid when it will store data in the system.
o Exceptions to the flow of data in the system.
o How and when the concepts of problem domain are handled.

19. List the various steps in micro development processes of a Booch Methodology. (May 2015)

1) Identify classes and objects.

2) Identify classes and object semantics.

3) Identify class and object relationships.

4) Identify class and object interface and implementations.

http://en.wikipedia.org/wiki/Creational_pattern
http://en.wikipedia.org/wiki/Object_creation
http://en.wikipedia.org/wiki/Class_%28computer_science%29
http://en.wikipedia.org/wiki/Constructor_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
http://en.wikipedia.org/wiki/Undo

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 9

20. What are the advantages of modeling? (May 2015)

 Rumbaugh’s OMT – well suited for describing object model / the static structure of the system

 Jacobson OOSE – well suited for producing user-driven analysis

 Booch OOAD – produces detailed OO design modules

21. What is the primary goal in the design of UML? (May 2016)

 Provide users with a ready-to-use, expressive visual modeling language so they can develop and

exchange meaningful models.

 Provide extensibility and specialization mechanisms to extend the core concepts.

 Be independent of particular programming languages and development processes.

 Provide a formal basis for understanding the modeling language.

 Encourage the growth of the OO tools market.

 Support higher-level development concepts such as collaborations, frameworks, patterns and

 components.

22. List the phases of Unified process.(May 2016)

Inception., Elaboration (milestone), Construction (release), Transition (final production release)

23. What is UML? (May 2017)

The Unified Modeling Language (UML) is a standardized way of specifying, visualizing, and documenting the

artifacts of an object-oriented software under development (among other things).

 UNIT – III

1. Mention the steps for finding use cases.(May 2015)
For each actor, find the tasks and functions that the actor should be able to perform or that the system
needs the actor to perform. The use case should represent a course of events that leads to a clear goal.
Name the use cases. Describe the use cases briefly by applying terms with which the user is familiar.
This makes the description less ambiguous.

2. List any two use cases for a “Libraray Management System”? (May 2017)

1.Borrow books

2.Supplier Return books

3.Circulation clerk

3. Get an inter liability loan

4. Do research

5. Read books / news paper

6. Purchase supplier
4. What is aggregation? (Dec 2016, May 2017)

A special form of association that models a whole-part relationship between an aggregate (the whole) and its parts.

5. Define actor.

An actor is a user playing a role with respect to the system. When dealing with actors, it is important to think

about roles rather than just people and their job , First class / Business class passenger

The actor is a key to find correct use cases. Actor carries out the use cases and shows the relationship

between users and actors.

6.When will Uses association, Extends association used?

The extends association is used when an use case that is similar to another use case but does a bit more

specialized; in essence, it is like a subclass. It results in inheritance.

 E.g., Borrow book, get a interlibrary loan. Checking out a book is the basic use case. This is the case that will

represent what happens when all goes smoothly. The uses association occurs when you are describing you

use cases and notice that some of them have sub flows in common.

 The use association allows extracting the common sub flow and making it a use case of its own.

 For example, checking a library card is common among the borrow books and return books.
7. What are the guidelines for selecting candidate classes from the relevant & Fuzzy
 categories of classes?
 • Redundant classes

Do not keep two classes that express the same information. If more than one word is being used to

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 10

describe the same idea, select the one that is the most meaningful in the context of the system.
 • Adjective classes

 Adjectives can be used in many ways. An adjective can suggest a different kind of object, different
use of the same object, or it could be utterly irrelevant.

 • Attribute classes
Tentative objects that are used only as values should be defined or restated as attributes and not as a
class.

 • Irrelevant classes: Each class must have e a purpose and every class should be clearly defined and
necessary.

8. Define 80-20 Rule. List the guidelines for selecting classes in an application

 80 percent of the work can be done with 20 percent of the documentation

 The 20 percent is easily accessible and the rest (80 percent) is available to those (few) who need to know.
Guidelines for selecting classes in an application
• Look for nouns and noun phrases in the cases.
• Some classes are implicit or taken from general knowledge.
• All classes must make sense in the application domain; avoid computer implementation classes - defer

them to the design stage.
• Carefully choose and define class names.

9. How would you name classes? List the approaches for identifying classes. Mention the types of object

relationships
 The class name should be singular.
 Choose the class name from standard vocabulary for the subject matter with which the clients or users

are comfortable.
 The class name should reflect its intrinsic nature.
 Use readable names.
 Capitalize class names.
 Code should be consistent and easy to read.

Approaches for identifying classes.

o Noun phrase approach

o Common class pattern approach

o Use-case driven approach

o Sequence / Collaboration Modeling

o CRC approach

 Types of object relationships

 Association

 Super-sub structure (generalization hierarchy)

 Aggregation and a-part-of structure

10. How do you separate actors from users?

 Each use case should have only one main actor

 Isolate users from actors

 Isolate actors from other actors (separate the responsibilities of each actor)

 Isolate use cases that have different imitating actors and slightly different behaviors.
11. List the guidelines for identifying super -sub relationships.

 Top-Down: Look for noun phrases composed of various adjectives in a class name.
 Avoid Successive refinement. Specialize only when the subclasses have significant behavior.
 Bottom-Up: look for classes with similar attributes and methods, in most cases. You can Group them by

moving the common attributes and methods to an abstract class
 Reusability: Move attributes and behavior as high as possible in the hierarchy.
 Do not create very specialized classes at the top of the hierarchy.
 Multiple Inheritance: Avoid excessive use of multiple inheritances.
 One way of achieving the benefits of multiple inheritance is to inherit from the most appropriate class

and add an object of another class as an attribute.
12. What is Generalization?Is association different from a part of a relationship?

 Superclass -subclass relationships, also known as Generalization hierarchy allow objects to be built

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 11

from other objects.
 Such relationships allow us to take advantage of the commonality of objects when constructing new

classes.
 Association and part of relation are similar except for the fact that it depends on problem domain and a

part of relation is a special case of association.

13. What are the guidelines for naming the classes?

 The class should describe a single object.

 It should be singular form of noun.

 Use names that the users are comfortable.

 The class name should reflect its intrinsic nature.

 Use readable names and Capitalize class names (Ex. Loan-Window).

14. List the guidelines for identifying super -sub relationships?

1. Top-Down 2. Bottom-Up 3. Reusability 4. Multiple Inheritance

15. What is super-sub class?

• It represents inheritance relationships between related classes, and the class hierarchy determines the lines of

inheritance between classes

• Allow objects to be built form other objects

• Also known as generalization hierarchy

• Parent class – also known as base or super class or ancestor

16. Differentiate Actors and Use cases.

Actors Use cases

Actor represents the role a

user plays with respect to

the system.

A use case defines the

interactions between

external actors and the

system

A sequence of transactions

in a system

An external system that

needs information from a

current system.

Yields results of measurable

values to an individual actor

of the system.

Actors can be the ones that

get value from the use case

Provides a special flow of

events.

17. Give the guidelines for identifying the tentative associations.

The following are the guidelines for identifying the tentative association: A dependency between two or more

classes may be an association, Association corresponds to a verb or prepositional phrase, such as part of, next

to, works for, or contained in, A reference from class to another is an association. Some association is implicit

or taken from general knowledge.

18. What are the various types of use cases?

 Use cases could be viewed as concrete or abstract. In abstract use case is not complete and has no imitation actors

but is used by a concrete use case, which does interact with actors.

19. State the three steps in CRC process.
 Class Responsibility Collaboration (CRC) model is a collection of standard index cards that have

been divided into three sections.
 A class represents a collection of similar objects, a responsibility is something that a class knows or

does, and a collaborator is another class that a class interacts with to fulfill its responsibilities.

20. How to eliminate unnecessary associations? Give examples. (May 2015)

 Implementation association

 Defer implementations-specific associations to the design phase.

 Ternary associations

 Ternary or n-ary associations complicate the representation. so when possible restate ternary

associations as binary associations.

 Direct actions (or derived) associations

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 12

 Direct associations can be defined in terms of other associations

 Since they are redundant avoid n these types of association. they are discovered

 by testing access paths to objects.

21. Write the guidelines for finding the use cases. (May 2015)
 For each actor, find the tasks and functions that the actor should be able to perform or that the system

needs the actor to perform. The use case should represent a course of events that leads to a clear goal.
 Name the use cases.
 Describe the use cases briefly by applying terms with which the user is familiar. This makes the

description less ambiguous.
22. List the types of use case relationships.(May 2016)

Association between actor and use case..Generalization of an actor..Extend between two use cases. Include

between two use cases. Generalization of a use case.

23. Name any four attributes of bank class. (May 2016)

 Account Number, Account Name, Amount, Types of Account

UNIT – IV

1. Differentiate good design and bad design.

Good design Bad design
1. Uncoupled design with less information

content.

Complex coupling with information

passed. 2. Each class must have a single purpose. No clearly defined single purpose.
3. There is a strong association between

physical system & logical system.

No strong association

2. What are the advantages of ORDBMS?(Dec 2016)

The main advantage of the object relational database is its reusability and sharing. Reusability helps to extend the

DBMS server to manage standard functionality centrally, rather than have it coded in each application. It ensures

large storage capacity. Supports for composite data types. Supports scalability and improved concurrency.

3. List the object oriented corollaries and axioms? (May 2016)

Corollaries
1. Uncoupled design with less information content.
2. Single purpose.
3. Large number of simpler classes.
4. Strong mapping
5. Standardization
6. Design with Inheritance
Axioms
 Independence axiom

– Maintain the independence of components. Each component must satisfy a requirement

without affecting other components
 Information axiom.

– Minimize the information content of the design. Least complex code to minimize complexity

4. Define axioms and corollaries

Axioms : is a fundamental truth that always is observed to valid and for which there is no counter example or

exception

Corollaries : is a proposition that follows from an axiom or another proposition that has been proven

5. What do you mean by multiple inheritance? How can u achieve multiple inheritances with single

inheritance? List out the advantages, challenges in design with inheritance?

 Some object oriented systems permit a class to inherit its state and behaviors from more than one super class.

 This kind of inheritance is referred to as multiple inheritance.

 It inherits the most appropriate class and add an object of another class as an attribute or aggregation.
 Inherit the most appropriate class and add an object of another class as an attribute or aggregation. Use

the instance of the class as an attribute.

Single inheritance: When a single new class inherits the behavior of a base (parent class).

 Advantages of inheritance:

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 13

 It is an abstraction mechanism which may be used to classify entities.

 It is a reuse mechanism at both the design and the programming level.

 The inheritance graph is a source of organizational knowledge about domain and systems.

 challenges in design with inheritance

 Multiple inheritances introduce ambiguity and program is more difficult to understand.

 We need to determine which behavior to get from which class, particularly when several ancestors have same

method.

6. What are Design Axioms?(May 2017)

 Design Axioms are fundamental truth that is always observed to be valid

• Axiom 1. The independence axiom.

• Axiom 2. The information axiom.

7. Write down the ways to design UI.

 Make the interface forgiving.
 Make the interface visual.
 Provide immediate feedback.
 Avoid modes

 Make the interface consistent

 Make the interface Beautiful,

 Give the interface look and feel appearance

 Design interface with clarity.
8. List the types of cohesion.

• .A method can carry only one function
• Coincidental

cohesion (worst)
• Logical

cohesion
• Temporal

cohesion
• Procedural

cohesion
• Communicatio

nal cohesion
• Sequential

cohesion
• Functional

cohesion (best)

9. What are the benefits of the Access Layer Class? List the access layer tasks

 These classes provide easy migration to emerging distributed object technology.
 These classes should be able to address the modest needs of two-tier client-server architectures as well

as the difficult demands of fine-grained, peer-to-peer distributed architectures.

 Access layer tasks

 Translate the request: The access layer must be able to translate any data related requests from the business

layer into the appropriate protocol for data access.

 Translate the results: The access layer also must be able to translate the data retrieved back into the

 appropriate business objects and pass those objects back into the business

10. What are the steps for the view layer macro process?

The view layer macro process consists of two steps: For every class identified determine if the class interacts

with a human actor. If so, perform the following; otherwise, move to next the next class, Iterate and refine

until the user satisfies.

11. What are applications responsible for the view layer?

The view layer objects are responsible for two major aspects of the applications:

Input -responding to user interaction: The user interface must be designed to translate an action by user, such

as clicking on a button or selecting from a menu, into appropriate response,

 Output displaying or printing business objects: This layer must paint the best picture possible of business

objects for the user. In one interface, this may mean entry fields and list boxes to display an order and its items

12. How can you avoid a sub class inheriting inappropriate behavior?
Make some of the class members of the super class as protected.

o Use polymorphism instead of inheritance.

o Define an abstract class and include the required behavior of the objects in the subclasses.
13. Enlist the different stages of detailed design in OOD.

 Apply design axioms to design classes, their attributes, methods, association structures and protocols

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 14

 Design the Access Layer
 Design the view layer

14. What do you mean by life time, categories of life time and object persistence?

 Object lifetimes can be short for local objects (called transient objects)

 Long for objects stored indefinitely in a database (called persistent objects).

 Transient results to the evaluation of expressions,

 Variables involved in procedure activation,

 Global variables and variables that are dynamically allocated,

 Data that exist between the executions of a program,

 Data that exist between the versions of a program,

 Data that outlive a program.

 Persistence refers to the ability of some objects to outlive the programs that created them.

15. What are the major activities in the process of designing view layer classes?

The process of designing view layer classes is divided into four major activities:

The macro level UI design process – identifying view layer objects

 Micro level UI design activities,

 Designing the view layer objects by applying design axioms and corollaries

 Prototyping the view layer interface

 Testing usability and user satisfaction

 Refining and iterating the design.

16. What do you mean by encapsulation leakage? What are public, private and protected

 protocols?

 When details about a class’s internal implementation are disclosed through the interface, it is known as

encapsulation leakage

• Private Protocol

– Accessible only to the operations of that class.

• Public Protocol

– Stated behavior used by all the classes.

 Protected Protocol

– Methods and attributes used by that class and subclasses

17. What is the purpose of view layer interface? (May 2017)

 User interface can employ one or more windows. Each window should serve a clear, specific purpose.

 Windows commonly used are Forms windows, data entry windows, Dialog boxes, Application windows, split

window and main window.

18. What do you mean by class visibility? Give example.(Dec 2016)

+ public visibility accessibility to all classes

protected visibility accessibility to sub classes and operations of the class

- private visibility accessibility only to operations of the class

Bank client class Adding visibility, implementation

Firstname #firstname

Lastname #lastname

Pinno #pinno

#card no

#account. Account(instance collection)

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 15

Where

 +

 -

 #

Public visibility

Private visibility

Protected visibility

19. What is MVC?

 Model–view–controller (MVC) is a software architectural pattern for implementing user interfaces.

 It divides a given software application into three interconnected parts, so as to separate internal

representations of information from the ways that information is presented to or accepted from the user.

20.What is meant by coupling? Describe the degree of coupling. (May 2015)
 Coupling denotes the measure of strength of association established by a connection from one object

to another.
 Cohesion is the interaction between software components or objects.

Highly cohesive element can lower coupling because only minimal information is passed between

components.

21. Give brief description about the basic types of attributes. (May 2015)

 Single valued attributes, Multi valued attributes, Reference to another object / instance connection.

 Visibility name : type-expression= initial-value

 + public visibility (accessibility to all classes),

 # protected visibility (accessibility to sub classes and operations of the class),

 - private visibility (accessibility only to operations of the class)

Bank client class Adding visibility, implementation

Firstname #firstname

Lastname #lastname

Pinno #pinno #card no #account.

Account(instance collection)

Where + - # Public visibility Private visibility

Protected visibility

22. What is bench mark?(May 2016)

 A benchmark is a point of reference by which something can be measured. In surveying,

 "bench mark" (two words) is a post or other permanent mark established at a known

 elevation that is used as the basis for measuring the elevation of other topographical

 points.

UNIT – V

1. Define language errors, run time errors and logical errors

Language Errors or syntax errors: It results from incorrectly constructed code, such as an incorrectly typed keyword

or some necessary punctuation omitted.

Run time errors: They occur and are detected as the program is running, when a statement attempts an operation that

is impossible to carry out.

Logic errors: When codes do not perform the way you intended. The code might be syntactically valid and run

without performing any invalid operations and yet produce incorrect results.
2. What is Black box testing?(Dec 2016)

http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/User_interface

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 16

Black-box testing is a method of software testing that examines the functionality of an application without

peering into its internal structures or workings. This method offtest can be applied virtually to every level of

software testing: unit, integration, system and acceptance.

3. Define a test case. Give an example.(Dec 2016, May 2017)

A test case is a set of conditions or variables under which a tester will determine whether a system

under test satisfies requirements or works correctly. The process of developing test cases can also help find

problems in the requirements or design of an application. A Test Case is a set of actions executed to verify a

particular feature or functionality of our software application.

Example:

Let us say that we need to check an input field that can accept maximum of 10 characters.

While developing the test cases for the above scenario, the test cases are documented the following way. In the

below example, the first case is a pass scenario while the second case is a FAIL.

Scenario Test Step Expected Result Actual Outcome

Verify that the input

field that can accept

maximum of 10

characters

Login to

application and

key in 10

characters

Application should

be able to accept all

10 characters.

Application

accepts accepts

all 10

10characters.

Verify that the input

field that can accept

maximum of 11

characters

Login to

application and

key in 11

characters

Application should

NOT accept all 11

characters.

Application

accepts accepts

allall 10

characters.

4. Name some of the testing strategies.

 Black- Box Testing - White- Box Testing o Path Testing - Statement testing coverage - Branch testing

coverage - Top-Down Testing - Bottom-Up Testing

5. Differentiate TQM and Six Sigma

TQM Six Sigma

It also focuses on continuous quality

improvements.

It focuses on continuous quality improvements

for achieving near perfection

It views quality as conformance to

internal requirements.

It views quality as conformance by restricting

the number of possible defects.

It is not so It is complementary to statistical process

control

TQM initiatives focus on improving

individual operations within unrelated

business processes

It focuses on improving all the operations

within a single business process.

TQM initiatives are usually a part-time

activity that can be managed by non-

dedicated managers

Six Sigma projects require the skills of

professionals that are certified

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 17

6. Specify the issues in OO testing.

Composition Issues

 Objective of OO is to facilitate easy code reuse in the form of classes

 To allow this each class has to be rigorously unit tested.

Encapsulation issues

 Encapsulation requires that classes are only aware of their own properties, and are able to operate

Independently

 If we do not have access to source code then structural testing can be impossible

 If we violate encapsulation for testing purposes, then the validity of test could be questionable

Inheritance - issues

 Inheritance is an important part of the object oriented paradigm .

 Unit testing a class with a super class can be impossible to do without the super classes

methods/variables.

Polymorphism Issues

 Repeatedly testing same methods

7. Define unit, the purpose of unit testing.

o a single, cohesive function

o a function which, when coded, fits on one page

o the smallest separately compilable segment of code

o a task in a work breakdown structure

o code that is assigned to one person

o It ensures the independent, accurate execution of a function

8. Define MM- path, ASF, GUI testing
 A Method/Message Path (MM-Path) is a sequence of method executions linked by messages.

 An MM-Path starts with a method and ends when it reaches a method which does not issue any

messages of its own.

ASF
 An Atomic System Function (ASF) is an input port event, followed by a set of MM-Paths, and

terminated by an output port event.
 An atomic system function is an elemental function visible at the system level.
GUI testing
 It is the process of ensuring proper functionality of the graphical user interface (GUI) for agiven

application and making sure it conforms to its written specifications.
9. What are the difficulties in GUI testing?

 GUI test automation is difficult
 Often GUI test automation is technology-dependent

 Observing and trace GUI states is difficult

 UI state explosion problem

 Controlling GUI events is difficult

 GUI test maintenance is hard and costly

10. Explain COTS and USTS?

 Commercial off –the –shelf (COTS) software tools are already written and a few are available for

analyzing and conducting user satisfaction tests.

 User satisfaction test spreadsheet (USTS) automates many bookkeeping tasks and can assist in

analyzing the user satisfaction test results.

11. Define Cryptanalysis / breaking the cipher/ crypto system.

 Cryptanalysis refers to the study of ciphers, cipher text, or cryptosystems with a view to finding

weaknesses in them that will permit retrieval of the plaintext from the cipher text, without necessarily

knowing the key or the algorithm.

12. What are the key functions of Inventory Tracking system?

 • Tracking inventory as it enters the warehouse, shipped from a variety of suppliers.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 18

• Tracking orders as they are received from a central but remote telemarketing

 organization; orders may also be received by mail, and are processed locally.

• Generating packing slips, used to direct warehouse personnel in assembling and

 then shipping an order.

• Generating invoices and tracking accounts receivable.

• Generating supply requests and tracking accounts payable.

13. What are the seven major functional activities in this business?

Major functional activities
• Order entry Responsible for taking customer orders and for responding to customer queries about the status

of an order

Accounting Responsible for sending invoices and tracking customer payments (accounts receivable) as well as

for paying suppliers for orders from purchasing (accounts payable)

• Shipping Responsible for assembling packages for shipment in support of filling customer orders

• Stocking Responsible for placing new inventory in stock as well as for retrieving inventory in support of

filling customer orders

• Purchasing Responsible for ordering stock front suppliers and tracking supplier shipments

• Receiving Responsible for accepting stock from suppliers
Planning Responsible for generating reports to management and studying trends in inventory levels and

customer activity

14. Define Client / server computing

 It is a decentralized architecture that enables end users to gain access to information transparently within

a multivendor environment.

 Client –server applications couple a GUI to a server-based RDBMS.

15. State the components of client / server application.

 Presentation logic

 The part of an application that interacts with an end-user device such as a terminal, a bar code reader,

or a handheld computer.

 Functions include “screen formatting, reading, and writing of the screen information, window

management, keyboard, and mouse handling.”

 Business Logic

 The part of an application that uses information from the user and from the database to carry out

transactions as constrained by the rules of the business.

 Database Logic

 The part of an application that “manipulates data within the application.

 Data manipulation in relational DBMSs is done using some dialect of the Structured Query Language

(SQL).”

 Database processing

 The “actual processing of the database data that is performed by the DBMS.

 The DBMS processing is transparent to the business logic of the application.

16. Why do you use blackboard framework? What are the components of blackboard framework?

 It holds the computational and solution-state data needed by and produced by the knowledge sources.

 The blackboard consists of objects from the solution space.

 The objects on the blackboard are hierarchically organized into levels of analysis.

 The objects and their properties define the vocabulary of the solution space

Components of blackboard framework

 A blackboard, multiple knowledge sources, and

 A controller that mediates among these knowledge sources

17. What is a knowledge source? State the reason for the use of knowledge source.

 The domain knowledge needed to solve a problem is partitioned into knowledge sources that are kept

separate and independent.

 The objective of each knowledge source is to contribute information that will lead to a solution to the

problem.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 19

 A knowledge source takes a set of current information on the blackboard and updates it as encoded in

its specialized knowledge.

 The knowledge sources are represented as procedures, sets of rules, or logic assertions

18. Why do you use UML?

 It allows communicating certain concepts more clearly than the alternatives.

 It is used to build a road map of a large system, use package diagrams to show the major parts of a

system and their interdependencies.

 For each package draw a class diagram.

 Use patterns to describe the important ideas in the system that appears in multiple places.

 Patterns help you to explain why your design is the way it is.

 It is also useful to describe designs you have rejected and why you rejected them.

19. What are the two approaches for reasoning?

 Forward-chaining involves reasoning from specific assertions to a general assertion

 Backward-chaining starts with a hypothesis, then tries to verify the hypothesis from existing assertions.

20. Distinguish between runtime errors and logic errors. (May 2015)

Run time errors: They occur and are detected as the program is running, when a statement attempts an

operation that is impossible to carry out.

Logic errors: When codes do not perform the way you intended. The code might be syntactically valid and

run without performing any invalid operations and yet produce incorrect results.

21. What is the impact of testing on object orientation? (May 2015)

 some types of errors could become less plausible.(not worth testing for)

 some types of errors could become most(worth testing for now)

 Some new types of errors might appear.

 For example, when you invoke a method, it may be hard to tell exactly which method gets executed.

 The method may belong to one of many classes.

 It can be hard to tell the exact class of the method.

 When the code accesses it, it may get unexpected value.

22. Write the objectives of testing.(May 2016, May 2017)

 Finding defects which may get created by the programmer while developing the software.

 Gaining confidence in and providing information about the level of quality.

 To prevent defects.

 To make sure that the end result meets the business and user requirements.

 To ensure that it satisfies the BRS that is Business Requirement Specification and SRS that is System

Requirement Specifications.

 To gain the confidence of the customers by providing them a quality product.

23. Name the two issues for software Quality. (May 2016)

 1. Lack of domain knowledge:

 2. Lack of technology knowledge:

 3. Unrealistic schedules:

 4. Badly engineered software:

24. Define debugging.

Debugging is the process of finding out where something went wrong and correcting the code to

eliminate the errors or bugs that cause unexpected results.

Part – B - UNIT – I

1. Describe in detail about the object basics in object oriented environment.

 Object is anything in the real world in an object

 It has properties/attributes that describe the state of an object and methods/procedures which

define its behaviour

 Eg., Stacks, Bonds – objects for investment application

 Parts, Assemblies - material management application

 Factors

http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/
http://istqbexamcertification.com/what-is-software-quality/

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 20

 What object does the application need?

 What functionality should these object have?

 Each object is responsible for itself.

 It is a combination of data and logic

 A window object is responsible for things like opening, sizing, and closing itself.

 A chart object is responsible for things like maintaining its data and labels, and even for drawing

itself.

 It is represented by the class diagram.

Object Car Window chart

Attributes Colour size label

 Year make data

 model price

 Price

Methods Go ()

Stop ()

Turn_left ()

Turn_right ()

Open ()

Close ()

Draw ()

OBJECTS ARE GROUPED INTO CLASSES

• Class – set of objects that share a common structure and behaviour

• Single object- instance of a class

• Class- specification of structures (instance var), behaviour(methods) and inheritable for objects

• It is a generic notion of an object

E.g., employee class

 x y z (objects/instance)

• Every object of a given class has same data format and respond to same set of instructions.

• The data associated with a particular object is managed by itself.

 Eg., x, y

 data- SSN, addr, salary

ATTRIBUTES: OBJECT STATE, PROPERTIES

 Properties- state of an object

E.g., car(object)

 cost, color, make , model…. (attributes)

• Color- sequence of character

• Cost- floating point/fixed point/integer

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 21

• An object abstract state can be independent of its physical representation

OBJECT BEHAVIOUR AND METHODS

• Object behavior is described in methods/procedures

• Method is a function/procedure that is defined for a class

 (i.e.,) it accesses the internal state of an object

• Behavior is a collection of methods that describes what an object is capable of doing

• The object called as the receiver is the one on which method operates

• Methods encapsulate the behavior of the object

• Methods provide interfaces to the object and hide any of the internal structure and state

maintained by the object

• Methods provide a means to communicate with an object and access its properties

 e.g., object- employee

 message- compute payroll

 employee

 emp id, bp, hra, da, pf, ta, lic premium

 cal netpay(), cal gross (), cal deduct()

 class payroll

 {

 int empid;

 float bp;

 float hra;

 float da;

 float pf;

 float ta;

 float lic;

 void cal netpay () //Method

 {

 gross = bp + hra + da + ta;

 ded = lic premium + pf;

 netpay= gross - ded;

 }

OBJECT RESPOND TO MESSAGES

• Object perform operations in response to messages

 E.g., car- stop message

 - object responds to the message

• Messages are non-specific function calls

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 22

 E.g., stop message – car, motorcycle, bicycle

• Object respond to messages according to methods defined in its class

 E.g.,

Object Method

Car Brake

5 * 7

employee compute payroll

• Messages make no assumptions about the class of the receiver

• It is the receiver’s responsibility to respond to message and results in flexibility

ENCAPSULATION AND INFORMATION HIDING

• Information hiding is the principle of concealing internal data and procedures of an object

• It provides an interface to each object in such a way to reveal its inner workings

• E.g., Simula – provides no protection /info hiding for object

• OO language provides a well-defined interface to their object thro’ classes

• E.g., C++ - general encapsulation mechanisms with public, private and protected members

• Public members may be accessed from anywhere

• Private members are accessible only from within a class

• Protected members can be accessed only from subclasses

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 23

PER-OBJECT PROTECTION

• Methods can access only the receiver

• For achieving encapsulation, different classes of object use a common protocol or object’s user

interface

PER- CLASS PROTECTION

• Class methods can access any object of that class not only the receiver alone

• E.g., engine- interface between the driver and car common protocol

• Data abstraction can be achieved , it incorporates encapsulation and polymorphism

CLASS HIERARCHY

• OO system organizes classes into subclass-super class hierarchy

• Top of the class hierarchy- most general classes/

• Bottom of the class hierarchy- most specifier

• Subclass – inherits all the properties and methods defined in the super class

• Subclasses and methods and properties specifier to that class

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 24

• Super class generalizes the behavior

• A class may simultaneously be the subclass to some class and super class to another class

• Formal or abstract classes have no instances but define common behavior that can be inherited by more

specifier classes

• Allows object to built from other object

• It is the relationship between classes, when one class is the parent classes of another class

• Parent class-base class/super class

• Allows classes to share and reuse behavior

• A class also inherits the behavior and attributes of all its super class

• Dynamic inheritance allows object to change and evolve over-time

• Dynamic inheritance - the ability to add, delete, change base classes from object at runtime

POL POLYMORPHISM

• Same operation behaving differently on different classes

• Polymorphism is the main difference when a message and sub-routine is called anywhere inside the

program

• message refers to the instruction while methods define the implementation of the instructions.

• Object understands messages and messages has name like method

• An object first searches the methods defined by its class

 If found, that method is called up

 If not, it searches for the method in the super class

 If found, that method is called up

• Search is done upwards and a method specifies how to do

• Allow to write generic usable code

• No assumption is made about the class of an object

OBJECT RELATIONSHIP and ASSOCIATIONS

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 25

• Association – relationships between objects and classes

• Association is bi-directional

Eg., can fly – forward direction flown by – backward direction

• Cardinality represents how many instances of one class may relate to a single instance of an associated

class

 1-1 - 1-1

 1-m - 1-*

 m-1 - *-1

 m-m - *-*

 - 0……*

 - 0……n

2. i)Discuss the object oriented system development life cycle in detail.(Dec2016, May2017)

 It consists of analysis, design, implementation, testing and refinement to transform users’

needs into a software solution that satisfies those needs.

 The process can be divided in to several subtasks.

 Each subtask may have

 A description in terms of hoe does it work

 Specification of the input required for the process

 Specification of the output to be produced

 The software development process can be divided into smaller, interacting sub processes which

may have further transformations

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 26

 Transformation 1 – Analysis

 It translates the users’ needs into system requirements and responsibilities

 Transformation 2– Design

 It begins with a problem statement and ends with the detailed design that can be transformed into

an operational system

 Transformation 3 – Implementation

 It refines the detailed design into the system deployment that will satisfy the users’ needs

 It includes the equipment, procedures, etc

 It represents embedding the software within its operational environment

 E.g., Waterfall Model

 This model is considered as the foundation for the rest of the models.

 It has analysis, design, coding, testing, implementation and deployment as the phases of software

development.

 During the analysis phase of the development, the requirements from the customer is collected.

 A project plan is prepared to meet the client's requirements and a software requirement

specification document is developed as the outcome of the project plan.

 The design phase of the project includes the preliminary design, architectural design and a

detailed design of the entire project which is pictorially / diagrammatically represented either as

a DFD or as a class diagram or as an ER diagram.

 The appropriate language or the environment is chosen for the development of the project during

the coding phase of the application.

 The project that is developed will be tested with sample valid and invalid test cases to check the

functionality of the entire application during the testing phase of the application.

 The application's functionality is completely tested at the developer's end during the

implementation of the project.

 The actual system is installed at the clients' premises during the deployment phase of the project

development.

 In each and every phase of the development, all the activities are to be documented.

 As a result, this model takes more time to develop and complete the project.

 This model is not suited for all types of real time application.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 27

 Building high quality software

 The software process transforms the users’ needs through the application domain to a software

solution that satisfies those needs

 Once the system / program exists, test it to see if it is free of bugs.

 High quality products must meet users’ needs and expectations

 The product should attain this high quality with minimal or no defects.

 The main focus is on improving the products or services prior to delivery of the product to the

customer.

 The goal of building high quality software is user satisfaction

 How do we determine when the system is ready for delivery to the customer?

 Is it now an operational system that satisfies users’ needs?

 Does it pass an evaluation process?

 Basic approaches to system testing

 Correspondence

 It measures how well the delivered system matches the needs of the operational environment

 Validation is the task of predicting correspondence

 The correspondence can not be determined until the system is in place.

 Correctness

 It measures the consistency of the product requirements with respect to the design specification

 Verification is the exercise of determining correctness



 ii) Differentiate Structured Approach from Object Oriented Approach.

SA/SD approach relies on modeling the processes that manipulate the given input data to produce the

desired output.

• Involves creation of preliminary data flow diagrams and data modeling.

• Encourages top down design / top down decomposition /stepwise refinement.

• It works by continually refining a problem into simpler and simpler chunks.

• For every employee do

Begin

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 28

 If employee = manager then

Call computemanagersalary

 If employee = officeworker then

Call computeofficeworkersalary

 If employee = production worker tehn

Call compute production worker salary

End

• Object oriented approach

• Object oriented analysis

• Object oriented information modeling

• Object oriented design

• Prototyping and implementation

• Testing, iteration and documentation

• Identification of classes

• Find the classes of objects that will compose the system i.e., Identify the entities

 These entities / objects can be individuals, organizations, machines, units of information, etc that

makes the context of the real world system

 These entities help in developing a workable system

 Identify the hierarchical relation between super classes and sub classes

 Identify the attributes or properties of the objects and the behaviour / methods of the objects

 Assign each responsibility to the class to which it logically belongs

 Employee (name, address,salary.ss#)\

• Office worker (dataentry().Compute payroll(),Printreport())

• Manager (dataentry().Compute payroll(),Printreport())

 Production worker(dataentry().Compute payroll(),Printreport())



 For every employee do

Begin

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 29

 Employee computepayroll

End

3. Model a class diagram for a banking system. State the functional requirements you are

 considering.(Dec 2016)

 Association

 A relationship can be defined by way of establishing associations among the objects.

 Such associations can be either unidirectional / bidirectional.

 Can use multiplicity to represent how many instances of one class may relate to a single instance of

an associated class.

 Such association can be consumer – producer association, super – sub class association or a part of

association.

 UML meta-model that shows the relationship among associations and generalization.

 associations represent conceptual relationships between classes.

 Derived associations and derived attributes can be calculated from other associations and attributes,

respectively, on a class diagram.

 The purpose of identifying the relationships among classes and objects is to solidify the boundaries

of and to recognize the collaborators with each abstraction identified earlier in the micro process.

 This activity formalizes the conceptual as well as physical separations of concern among

abstractions begun in the previous step.

 Expressing the existence of an association identifies some semantic dependency between two

abstractions, as well as some ability to navigate from one entity to another.

o As part of design, we apply this step to specify the collaborations that: form the mechanisms

of our architecture, as well as the higher-level clustering of classes into categories and

modules into subsystems.

 Associations are used for reference objects. Frozen is a constraint that the UML defines as

applicable to an attribute or an association end,

 Frozen indicates that the value of that attribute or association end may not change during the

lifetime of the source object.

 A qualified association is known as associative arrays, maps, and dictionaries.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 30

 class Order {

 public OrderLine getLineItem

 (Product aProduct);

 public void addLineItem

 (Number amount, Product forProduct);

 As implementation proceeds, we refine relationships such as associations into more

 Implementation-oriented relationships, including instantiation and use.

o Each association has two association ends; each end is attached to one of the classes in the

association.

o An end can be explicitly named with a label.

o This label is called a role name. (Association ends are often called roles.)

o An association end also has multiplicity, which is an indication of how many objects may

participate in the given relationship.

o interface for an Order class:

 class Order {

 public Customer getCustomer();

 public Set getOrderLines();

 class Customer {

 private Set _orders;

o If navigability exists in only one direction, we call the association a unidirectional association.

A bidirectional association contains navigability in both directions.

o An association represents a permanent link between two objects

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 31

 Aggregation refers to the whole – part of relationships among objects.

 All objects are composed of and may contain other objects.

 An object can refer to other objects.

 An attribute can be an object t itself. .Parts with multiplicity > 1 may be created after the aggregate

itself but, once created, they live and die with it.

 Aggregation

 The "is a" hierarchies denote generalization/specialization relationships, "part of, hierarchies

describe aggregation relationships.

 For example, consider the following class:

class Garden {

public:

Garden();

virtual ~Garden();

protected:

Plant* repPlants[100];

GrowingPlan repPlan;

};

Aggregation permits the physical grouping of logically related structures, and inheritance allows these common

groups to be easily reused one different abstractions

Composition

 Composition is a specialized form of Aggregation.

 It is a strong type of Aggregation.

 The Parent and Child objects have coincident lifetimes.

 Child object dose not have it's own lifecycle and if parent object gets deleted, then all of it's child

objects will also be deleted.

 Referential Integrity principle

 Let’s take an example of a relationship between House and it's Rooms.

 House can contain multiple rooms there is no independent life for room and any room can not

belong to two different house.

 If we delete the house room will also be automatically deleted.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 32

4. Model a class diagram for a “Bus Ticket Booking System”. State the functional requirements that

 you are considering. (May 2017)

Refer previous question

5. Write short notes on the following

i) Associations and Aggregations, composition

Refer previous question number 3

ii) Class Hierarchy and Inheritance

The IS-A relationship (pronounced “is a”) is a data relationship that indicates a type/subtype data

relationship.

While traditional Entity/Relation modeling deals only with single entities, the IS-A approach

recognizes that many types or classes of an individual entity can exist.

In fact, the IS-A relationship is the foundation of object-oriented programming, which allows the

designer to create hierarchies of related classes and then use inheritance and polymorphism to

control which data items will participate in the low-level objects.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 33

 After establishing a class hierarchy with the E/R model, the object-oriented principle of generalization is

used to identify the class hierarchy and the level of abstraction associated with each class.

 Generalization implies a successive refinement of a class, allowing the super-classes of objects to inherit

data attributes and behaviors that apply to the lower levels of a class.

 Generalization establishes taxonomy hierarchies.

 Taxonomy hierarchies organize classes according to their characteristics in increasing levels of detail.

 These hierarchies begin at a very general level and then proceed to a specific level, with each sublevel

having its own unique data attributes and behaviors.

 In Figure 2.12, the IS-A relationship is used to create a hierarchy within the EMPLOYEE class.

 The base class for an employee has the basic data items such as name, address and phone number.

 There are sub-classes of employees, executives and hourly employees, each with their own special data

items and methods.

Figure 2.12 - An Entity/Relation model with added IS-A relationships.

• Consider the application of the IS-A relationship for a vehicle dealership, as shown in Figure 2.13. As

you can see, the highest level in the hierarchy is VEHICLE.

• Beneath the vehicle class, you might find car and boat subclasses.

• Within the car class, the classes could be further partitioned into classes for TRUCK, VAN, and

SEDAN.

• The VEHICLE class would contain the data items unique to vehicles, including the vehicle ID and the

year of manufacture.

• The CAR class, because it IS-A VEHICLE, would inherit the data items of the VEHICLE class.

• The CAR class might contain data items such as the number of axles and the gross weight of the vehicle.

• Because the VAN class IS-A CAR, which in turn IS-A VEHICLE, objects of the VAN class inherit all

data items and behaviors relating to the CAR and VEHICLE classes.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 34

Figure 2.13 – A class hierarchy for a vehicle rental company.

Oracle has the ability to "create type" within type and model this relationship directly, but it is not a popular

approach because the structures are hard to change.

The first technique (incorrect IMHO) is to create sub-tables for car, boat, sedan, and so on.

This encapsulates the data items within their respective tables, but it also creates the complication of doing

unnecessary joins when retrieving a high-level item in the hierarchy.

 For example, the following SQL would be required to retrieve all the data items for a luxury sedan:

select

 vehicle.vehicle_number,

 car.registration_number,

 sedan.number_of_doors,

 luxury.type_of_leather_upholstery

from

 vehicle,

 car,

 sedan,

 luxury

where

 vehicle.key = car.key

and

 car.key = sedan.key

and

 sedan.key = luxury.key;

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 35

• The IS-A relationship is best suited to the object-oriented data model, where each level in the hierarchy has

associated data items and methods, and inheritance and polymorphism can be used to complete the picture.

• It is important to note that not all classes within a generalization hierarchy will be associated with objects.

• These non-instantiated classes only serve the purpose of passing data definitions to the lower-level classes.

• The object-oriented paradigm allows for abstraction, which means that a class can exist only for the

purpose of passing inherited data and behaviors to the lower-level entities.

• The classes VEHICLE and CAR probably would not have any concrete objects, while objects within the

VAN class would inherit from the abstract VEHICLE and CAR classes.

Inheritance

 A sub class inherits all of the properties and methods / procedures defined in its super class.

 Super classes generalizes behaviour

 A class may simultaneously be the sub class to some class and a super class to another class / classes

 The car class defines how a car behaves.

 E.g., the Ford class defines the behaviour of Ford cars.

 The Ford class inherits the general behaviour from the car class and adds specific behaviour to Ford.

 the redefinition of the behaviour of the car class is not needed.

 The stop method is defined in class Ford and not in Mustang class

 The Mustang class can inherit behaviour from the car and the vehicle classes

 The behaviours of any given class are behaviours of its super class or a collection of classes

 Inheritance allows explicitly by considering the commonality of the objects when constructing new

classes

 It is an association between classes where one class is the parent class of another derived class.

 The parent class is also known as the base class or super class

 Inheritance provides programming by extension.

 Reusability is achieved through inheritance

 It allows classes to share and reuse behaviours and attributes.

 The behaviour of a class instance is defined in that class's methods.

 A class also inherits the behaviour and attributes of all of its super classes.

 Dynamic inheritance / run time polymorphism allows objects to change and evolve over time.

 Base classes provide properties and attributes for objects.

 Changing base classes changes the properties and attributes of a class

 It refers to the ability to add, delete or change parents from objects or classes at run time.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 36

6. Explain Object Identity, Static and Dynamic Binding, Object Persistence and Meta classes.

OBJECT IDENTITY

• Every object has its own unique id

• An object id comes into being when it is created

• The id never changes even if all the properties of an object change

 (i.e.,) It is independent of the object’s state

• The object identify is complemented thro’ OID/UID

• Pointers refer directly to the address of a thing, while object refer directly denote the object to which

they refer

Static binding dynamic binding

• Values are associated to the

variables at the compile time

• Values are associated to the variable

at runtime/execution time

• Optimizes the calls • It occurs when polymorphic calls are

issued

• It is not so • Some method invocation decisions to

be deferred until the information is

known

OBJECT PERSISTENCE

• Lifetime of a particular object how long an object can exist for a period of time

META CLASS

• A class is an object.

• If it is an object, it must belong to a class.

• Such a class belong to a class is called as a meta class or a class of classes.

• Classes can be implemented with the set of methods, instances and parents / super class

• This can be defined as a class called meta class.

• This meta class can also provide services to application programs such as returning a set of all methods,

instances.

• All objects are instances of a class and all classes are instances of a meta class

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 37

7. Describe in detail about the following

 i) Prototyping and types of prototypes

ii) Rapid Application Development

iii)Component Based Development

Prototyping

 A prototype is a version of a s/w product developed in the early stage of the product life cycle for

specific, experimental purpose.

 It is considered as the first model of the system.

 Since the customer requirements is not taken into account, the innovative ideas of the developer are

applied for the development of the project.

 It does not have specification obtained from the client, no customer feedback and deployment.

 With lesser time, a prototype can be developed.

 Once the developer of the prototype is satisfied with its performance, the prototype can be converted into

a commercial product to be sold to a client.

 At this stage, the needy client and the specifications are obtained from the actual client and the product is

accordingly developed.

 The prototype that is kept at the experimental lab is now deleted. Hence it is known as the throw away

prototype.

 It can further define the use case and makes use case modeling much easier.

 Classification of prototype

1. Horizontal Prototype 3. Analysis Prototype

2. Vertical Prototype 4. Domain Prototype

 Horizontal Prototype

 A horizontal prototype is a simulation of the interface but contains no functionality.

 This has the advantage of being very quick to implement, providing a good overall feel of the system.

 Vertical Prototype

 A vertical prototype is the subset of system features with complete functionality.

 A few implemented function can be tested in great depth.

 In practice prototype is hybrid between horizontal and vertical.

 Analysis Prototype

 An analysis prototype is an aid for exploring the problem domain.

 This class of prototype is used to inform the user and demonstrate the proof of the concept.

 It can be discarded when it has served its purpose.

 Domain prototype

 A domain prototype is an aid for the incremental development of the ultimate software solution.

 The software is used as a tool for the staged deliver of subsystem to the user or other members of the

development team.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 38

 It demonstrates the feasibility of the implementation and eventually will evolve into a designable

product.

 The typical time required to produce a prototype is from a few days to several weeks depending on the

type and function of the prototype.

ii) Rapid Application Development (RAD) Model

 “Rapid Application Development (RAD) is an incremental software development process model that

emphasises a very short development cycle [typically 60-90 days].”

 The RAD model, is a high-speed adaptation of the waterfall model, where the result of each cycle a

fully functional system.

 RAD is used primarily for information systems applications

 The RAD approach encompasses the following phases:

Business modelling

 The information flow among business functions is modeled in the following manner:

 What information drives the business process?

 What information is generated?

 Who generates it?

 Where does the information go?

 Who processes it?

Data Modelling

 The information flow defined as part of the business modeling phase is refined into a set of data objects

that are needed to support the business.

 The characteristics (called attributes) of each object are identified and the relationships between these

objects are defined.

Process Modelling

 The data objects defined in the data-modeling phase are transformed to achieve the information flow

necessary to implement a business function.

 Processing descriptions are created for adding, modifying, deleting, or retrieving a data object.

Application Generation

 RAD assumes the use of the RAD fourth generation techniques and tools like VB, VC++, Delphi etc

rather than creating software using conventional third generation programming languages.

 The RAD works to reuse existing program components (when possible) or create reusable components

(when necessary).

 In all cases, automated tools are used to facilitate construction of the software.

Testing and turnover

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 39

 Since the RAD process emphasizes reuse, many of the program components have already been tested.

 This minimizes the testing and development time.

 If a business application can be modularized so that each major function can be completed within the

development cycle then it is a candidate for the RAD model.

 In this case, each team can be assigned a model, which is then integrated to form a whole.

 Disadvantages

o For Large (but scalable) projects, RAD requires sufficient resources to create the right number of RAD

teams.

o RAD projects will fail if there is no commitment by the developers or the clients to ‘rapid-fire’ activities

necessary to get a system complete in a much abbreviated time frame.

o If a system cannot be properly modularized, building components for RAD will be problematic

o RAD is not appropriate when technical risks are high, e.g. this occurs when a new application makes

heavy use of new technology.

Component – Based Development

 Component-Based Development (spiral model variation in which applications are built from

prepackaged software components called classes) .

 It is an iterative approach to the creation of software.

 It composes applications from prepackaged software components.(Classes).

 Identify the candidate classes.

 Data & algorithms are packaged into a class.

 All the Classes are stored in a class library.

 To identify the classes , search it in the library , if it is there extract and reuse it.

 If it is not in the library .it is engineered using object oriented methods.

 Steps

 Available component – based products are searched and evaluated for the application domain in

question.

 Component integration issues are considered

 Software architecture is designed to accommodate the components.

 Components are integrated into the architecture.

 Comprehensive testing is conducted to ensure proper functionality

Advantages

 It leads to software reusability.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 40

 It reduces 70% reduction in development cycle time & 84% reduction in project cost.

 Its productivity index is 26.2%.

8. Write short notes on the following

 Encapsulation and Abstraction with examples

 Encapsulation refers to the protection mechanism with public, private and protected members

 "No part of a complex System should depend on the internal details of any other part"

 An object encapsulates the data and the program.

 The user cannot see the contents inside the object but can use the object by calling the object’s

methods.

 Encapsulation helps an object to send a message to the target object requesting information.

 This ensures that no object can operate directly on another object’s data.

 Encapsulation hides the details of the implementation of an object.

 Encapsulation is most often achieved through information biding,

 It is the process of hiding all the secrets of an object that do not contribute to its essential characteristics;

the structure of an object is hidden, as well as the implementation of its methods.

 Encapsulation is the process of compartmentalizing the elements of an abstraction that constitute its

structure and behavior; encapsulation serves to separate the contractual interface of an abstraction and its

implementation.

Examples of Encapsulation

Class Heater in C++

Class Heater {

public:

 Heater (location);

 ~Heater ();

 Void turnOn();

Void turnoff();

Boolean isOn() const;

private:

…

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 41

};

This interface represents all that a client needs to know about the class Heater.

class Heater {

public:

…

protected:

const Location repLocation;

Boolean repIs0n;

SerialPort* repPort;

};

Implementation of each operation associated with this class

Heater::Heater (location 1) : repLocation (1), repIs0n (FALSE),

repPort(&SerialPort::ports[1]) {}

Heater::~Heater() {}

Void Heater::turnOn() {

if (!repIs0n) {

repPort->write(“*”);

repPort->write(repLocation);

repPort->write(1);

repIs0n = TRUE;

}

}

Void Heater::turnoff() {

if (repIs0n) {

repPort->write(“*”);

repPort->write(replocation);

repPort->write(O);

repIs0n = FALSE;

}

}

Boolean Heater::isOn() const {

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 42

return repIs0n;

}

9. Explain in detail about Unified Approach.

 The idea behind the UA is to combine the best practices, processes, methodologies, and guidelines

along with UML notations and diagrams.

 Unified approach is a methodology for software development.

 UML is a set of notations and conventions used to describe and model an application.

 UML does not specify a methodology.

• The unified approach to software development revolves around (but is not limited to) the following

processes and components.

• The processes are:

– Use-case driven development.

– Object-oriented analysis.

– Object-oriented design.

– Incremental development and prototyping.

– Continuous testing.

UA Methods and Technology

• The methods and technology employed includes:

– Unified modelling language (UML) used for modelling.

– Layered approach.

– Repository for object-oriented system development patterns and frameworks.

– Promoting Component-based development.

The unified approach comprises of analysis, design prototyping and testing.

• During analysis, identify the users / actors using the system requirements.

• Develop a simple business process model.

• Develop the use case.

• Develop the interaction, collaboration diagram.

• Apply classification.

 Design

• Apply design axioms to design classes, their attributes, methods, aggregation, structures and protocols.

• Design the access layer

• Design the view layer.

• Prototype and interface

 Usability and user satisfaction testing

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 43

10. What is meant by abstraction? What are the various kinds of abstraction?

 Abstraction is one of the fundamental ways that we as humans cope with complexity.

 A good abstraction is one that emphasizes details that are significant to the reader or user and suppresses

details that are, at least for the moment, immaterial or diversionary

 Hoare - "It arises from a recognition of similarities between certain objects, situations, or processes in

the real world, and the decision to concentrate upon these similarities and to ignore for the time being

the differences"

 Shaw - "a simplified description, or specification, of a system that emphasizes some of the system's

details or properties while suppressing others.

 Grady Booch - “A concept qualifies as an abstraction only if it can be described, understood, and

analyzed independently of the mechanism that will eventually be used to realize it”,

 It denotes the essential characteristics of an object that distinguish it from all other kinds of objects and

thus provide crisply defined conceptual boundaries, relative to the perspective of the viewer.

 An abstraction focuses on the outside view of an object

 It serves to separate an object's essential behavior from its implementation.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 44

Abstraction focuses upon the essential characteristics of some object, relative to the perspective of

the viewer.

Kinds of abstractions

• Entity abstraction
• An object that represents a useful model of a problem domain or solution-domain entity

• Action abstraction
• An object that provides a generalized set of operations, all of which perform the same kind of function

• Virtual machine abstraction
• An object that groups together operations that are all used by some superior level of control, or

operations that all use some junior-level set of operations

• Coincidental abstraction

• An object that: packages a set of operations that have no relation to each other strive to build entity

abstractions, because they directly parallel the vocabulary of a given problem domain.

• A client is any object that uses the resources of another object (known as the server).

• An invariant is some Boolean (true or false) condition whose truth must be preserved.

• For each operation associated with an object, we may define preconditions (invariants assumed by the

operation) as well as post conditions (invariants satisfied by the operation).

• If a post condition is violated, this means that a server has not carried out its part of the contract, and so

its clients can no longer trust the behavior of the server.

• An exception is an indication that some invariant has not been or cannot be satisfied.

Example

On a hydroponics farm, plants are grown in a nutrient solution, without sand, gravel, or other soils.

C++ code that capture our abstraction of a temperature sensor:

//Temperature in degrees Fahrenheit

typedef float Temperature;

// Number uniquely denoting the location of a sensor

typedef unsigned int Location;

class TemperatureSensor {

Public:

TemperatureSensor(Location);

~TemperatureSensor() ;

void calibrate(Temperature actualTemperature);

Temperature currentTemperature() const;

private:

…

};

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 45

 The two typedefs, Temperature and Location, provide convenient aliases for more primitive types,

thus letting us express our abstractions in the vocabulary of the problem domain5.

 Temperature is a floating-point type representing temperature in degrees Fahrenheit.

 The type Location denotes the places where temperature sensors may be deployed throughout the farm.

 The class TemperatureSensor captures our abstraction of a sensor itself; its representation isbhidden in

the private part of the class.

 TemperatureSensor is defined as a class, not a concrete object, and therefore we must first create an

instance so that we have something upon which to operate.

 For example, we might write:

Temperature temperature;

TemperatureSensor greenhouselSensor(l);

TemperatureSensor greenhouse2Sensor(2);

temperature = greenhouselSensor.currentTemperature();

i) Describe in detail about the software development process. (May 2015)

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 46

 The essence of the software development process that consists of analysis, design, implementation,

testing, and refinement is to transform users' needs into a software

solution that satisfies those needs

 Develop a prototype to identify the features of the software.

 The prototype may help the users to comment on the usability of the product.

 The process can be divided into small, interacting sub processes.

 Each sub process must describe a specification of the inputs required, output to be generated.

 Transformation 1 – Analysis

 It translates the users’ needs into system requirements and responsibilities

 Transformation 2– Design

 It begins with a problem statement and ends with the detailed design that can be transformed into

an operational system

 Transformation 3 – Implementation

 It refines the detailed design into the system deployment that will satisfy the users’ needs

 It includes the equipment, procedures, etc

 It represents embedding the software within its operational environment

 Object oriented system development - Use case driven

• Use cases provide scenario for understanding the specific requirements.

• Provides interaction between users and systems.

• Captures the goal of the user and responsibility of the user to the system.

• Shows various courses of the events to be performed.

• Use Case

• A sequence of transactions in a system.

• Yields results of measurable values to an individual actor of the system.

• Provides a special flow of events.

• Group of various courses of events are represented as an use case class.

• E.g., Borrow book

– Whether a book is available in the library.

– Whether the user is an member of the library.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 47

ii) List and explain the various system evaluation quality measures for software development.

• The software process transforms the users’ needs through the application domain to a software

solution that satisfies those needs

• Once the system / program exists, test it to see if it is free of bugs.

• High quality products must meet users’ needs and expectations

• The product should attain this high quality with minimal or no defects.

• The main focus is on improving the products or services prior to delivery of the product to the

customer.

• The goal of building high quality software is user satisfaction

• How do we determine when the system is ready for delivery to the customer?

• Is it now an operational system that satisfies users’ needs?

• Does it pass an evaluation process?

• Basic approaches to system testing

• Correspondence

• It measures how well the delivered system matches the needs of the operational environment

• Validation is the task of predicting correspondence

• The correspondence can not be determined until the system is in place.

• Correctness

• It measures the consistency of the product requirements with respect to the design specification

• Verification is the exercise of determining correctness

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 48

11. i) Discuss in detail about different association relationship.(May 2016)

 ii) Write about class hierarchy with suitable example.

 Refer previous question answers.

UNIT – II

1. Explain in detail about Rumbaugh , Booch and Jacobson methods.(Dec 2016, May 2017)

OBJECT MODELING TECHNIQUE (OMT) Rumbaugh

• Describes a method for analysis, design and implementation of a system

• Fast intuitive approach

 identify and model all the object

 class , attributes , methods – defined easily

• Dynamic behavior of object is described – OMT dynamic model

 Process description

 Consumer – Producer association

PHASES – OMT

1. Analysis – outcomes- object , dynamic and functional model

2. System design – Basic architecture of the system

• High level strategy decision

 Static

3. Object design – Design, Document Dynamic

 Functional

4. Implementation – Reusable, extendible code

• OMT separates modeling into 3 phases viz.,

• Object model – presented by object model & data dictionary

• Dynamic model – state diagrams, event flow diagrams

• Functional model – data flow & constraints

OBJECT MODEL

• Describes the structure of object

 identity, relationships to other object

 attributes, operations

• Uses object diagrams

 object diagram – classes interconnected by associations

 each class – set of object

 association – establishes relationships among the classes

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 49

OMT – DYNAMIC MODEL

• Detailed and comprehensive model

• Depicts various states , transitions , events , actions

• State transition diagram – n/w of states , events

 Each state receives one or more events at which time transition results in next state

Eg., dynamic model – Banking system

OMT – FUNCTIONAL MODEL

• DFD shows flow of data between different processes

 - any function / process

 - data flow- direction of data element / movement

 - external entity-source / sink

 - data store-location where data are stored

Eg., ATM

OBJECT MODELING – BOOCH METHODOLOGY

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 50

State transition diagram – eg., alarm class

MACRO DEVELOPMENT PROCESS

• Controlling framework for micro process

• Technical management of the system

• Class diagram

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 51

 State Transition diagram

STEPS

1. Conceptualization

 Establish core requirements of the system

 Establish a set of goals

 Develop a prototype

2. Analysis & Development of the model

 user class diagrams – describe roles and relationships

 user object diagram – describe designed behavior in terms of scenarios and interaction diagram

3. Design / Create the system architecture

 use class diagram – what classes exist, their relationships

 Object diagram – what mechanisms are used

 Module diagram – map out where each class & object is declared

 Process diagram – determines the allocation of process

4. Evolution / Implementation

 Refine the system thru’ many iterations

 Produce a stream of s/w implementations

5. Maintenance

 Include localized changes to the system to add new requirements

MICRO DEVELOPMENT PROCESS

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 52

• Description of routine activities

STEPS

1. Identify classes and objects

2. Identify classes and object semantics

3. Identify classes and object relationships

4. Identify classes and object interfaces and implementation

 JACOBSON’s METHODOLOGY

• OOSE - Object Oriented Software Engg

• Covers entire life cycle

• Traceability between different phases

USE CASES

• Scenarios for understanding system requirements

• An interaction between users and system

• Captures the goal of the user and responsibility of the system

Eg., Library system

REQUIRED ANALYSIS

1. Non-format text with no clear flow of events

2. Text-easy to read with clear flow of events

3. Format style using pseudo code

• The use case description must contain –

1. How and when use case begins and ends

2. Interaction between use case and its actors

3. When the interaction occurs and what is exchanged

4. How and when the use case will need data stored in the system or will store the data in the

system

5. Exceptions – finding error during the run-time

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 53

2. Discuss generative, non generative patterns and anti patterns and list the guidelines on capturing

 patterns. Also discuss about abstract factory pattern.

Definition

 A pattern is an instructive information that captures the essential structure

 It provides an insight of a successful family of proven of solutions to a recurring problem that arises

within a certain context and system of forces.

Good pattern will do the following:

 It solves a problem

 Patterns capture solutions, not just abstract principles or strategies.

 It is a proven concept

 Patterns captures solutions with a track record, not theories or speculation.

 The solution is not obvious

 The best patterns generate a solution to the problem indirectly – a necessary

 approach for the most difficult problems of design.

 It describes a relationship

 Patterns do not just describe modules but describe deeper system structures and

 mechanisms.

 The Pattern has a significant human component

 All software serves human comfort or quality of life. The best Patterns explicitly

 appeal to aesthetics and utility.

Generative patterns

 They are patterns that not only describe a recurring problem, they tell us how to generate something and

can be observed in the resulting system architectures.

 Alexander explains that the most useful patterns are generative: they are dynamic; they tell us what to

do; they tell us how we shall, or may, generate them; they tell us too, that under certain circumstances,

we must create them.

Non generative patterns

 They are static and passive: They describe recurring phenomena without necessarily saying how to

reproduce them.

Patterns Template

 Every pattern must be expressed “in the form of a rule [template] which establishes a relationship

between a context, a system of forces which arises in that context, and a configuration, which allows these

forces to resolve themselves in that context”.

Essential components/elements that should be recognizable on reading a pattern

1. Name

 A meaningful name. This allows us to use a single word or short phrase to refer to the pattern and the

knowledge and structure it describes.

2. Problem

 A statement of the problem that describes its intent: the goals and objectives it wants to reach within the

given context and forces.

3. Context

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 54

 The preconditions under which the problem and its solution seem to recur and for which the solution is

desirable.

4. Forces

 A description of the relevant forces and constraints and how they interact or conflict with one another

and with the goals we wish to achieve.

5. Solution

 Static relationships and dynamic rules describing how to realize the desired outcome.

 This often is equivalent to giving instructions that describe how to construct the necessary products.

 The description may encompass pictures, diagrams, and prose that identify the pattern’s structure, its

participants, and their collaborations, to show how the problem is solved.

 The solution should describe not only the static structure but also dynamic behavior.

6. Examples

 One or more sample applications of the pattern that illustrate a specific initial context; how the pattern is

applied to and transforms that context; and the resulting context.

 Examples help the reader understand the pattern’s use and applicability.

 Visual examples and analogies often can be very useful.

7. Resulting context

 The state of configuration of the system after the pattern has been applied, including the consequences

(both good and bad) of applying the pattern, other problems and patterns that may arise from the new

context.

 It describes the post conditions and side effects of the pattern.

 This is sometimes called a resolution of forces because it describes which forces have been resolved,

which ones remain unresolved, and which patterns may now be applicable.

8. Rationale

 A justifying explanation of steps or rules in the pattern and also of the pattern as a whole in terms of

how and why it resolves its forces in a particular way to be in alignment with desired goals, principles

and philosophies.

9. Related patterns

 The static and dynamic relationships between this pattern and others within the same pattern language or

system. Related patterns often share common forces.

 They also frequently have an initial or resulting context that is compatible with the resulting or initial

context of another pattern.

10. Known uses

 The known occurrences of the pattern and its application within existing systems.

 This helps validate a pattern by verifying that it indeed is a proven solution to a recurring problem.

Pattern Thumbnail

 Good pattern often begin with an abstract that provides a short summary or overview.

 This gives readers a clear picture of the pattern and quickly informs them of its relevance to any

problems they may wish to solve.

 Sometimes such a description is called a thumbnail sketch of the pattern or a pattern thumbnail.

Anti patterns

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 55

 A pattern represents a “best practice” whereas an anti pattern represents “worst

 practice” or a “lesson learned”. Anti patterns come in two varieties:

 1. Those describing a bad solution to a problem that resulted in a bad situation.

 2. Those describing how to get out of a bad situation and how to proceed from

 there to a good solution.

 Capturing Patterns

 Patterns should provide not only facts but also tell a story that captures the experience they are trying to

convey.

 A pattern should help its users comprehend existing systems, customize systems to fit user needs, and

construct new systems.

 The process of looking for patterns to document is called pattern mining (or sometimes reverses

architecting).

Guidelines for Capturing Patterns

1. Focus on practicability

Pattern should describe proven solutions to recurring problems rather than the latest scientific results.

2. Aggressive disregard of originality

Pattern writers do not need to be the original inventor or discoverer of the solutions that they document.

3. Nonananymous review

Pattern submissions are shepherded rather than reviewed. The pattern might be clarified or improved on.

4. Writers’ workshops instead of presentations

Rather than being presented by the individual authors, the patterns are discussed in writers’ workshops,

open forums where all attending seek to improve the pattern presented by discussing what they like

about them and the areas in which they are lacking.

5. Careful editing

The pattern authors should have the opportunity to incorporate all the comments and insights during the

shepherding and writers’ workshops before presenting the patterns in their finishing form.

CREATIONAL PATTERNS - ABSTRACT FACTORY

INTENT

• Provide an interface for creating families of related/dependent objects without specifying their concrete

classes

ALSO KNOWN AS

• Kit

MOTIVATION

• Uses interface toolkit that supports multiple look an feel standards such as MOTIF and presentation

manager

• Different “look-and-feels” define different approaches and behaviors for user interface “widgets” like

scroll bars, windows and buttons

• Objective ensure portability across look-and-feel standards

1. Define an abstract widget factory class that declares an interface for creating each basic kind of widget

2. Define an abstract class for each kind of widget

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 56

3. Concrete subclasses implement widgets for specific look-and-feel standards

4. Widget factory’s interface has an operation that returns a new widget object for each abstract widget

class

 Clients call these operations to obtain widget instances, but clients aren’t aware of the concrete classes

they are using

• Clients stay independent of the prevailing look and feel

• A widget factory enforces dependencies between the concrete widget classes

APPLICABILITY

• Use the abstract factory pattern when,

1. A system should be independent of how its products are created, composed and represented

2. A system should be configured with one of multiple families of products

3. A family of related product objects is designed to be used together and constraints are enforced

4. To provide a class library of products in which only the interfaces are to be revealed and their

implementation

PARTICIPANTS

1. Abstract factory – widget factory declares an interface for operation that create abstract product objects

 2. Concrete factory(MOTIF widget factory, OM widget factory) implements the operations to

 create concrete product objects

3. It promotes consistency among products – An application uses objects from only one family at a time

4. Supporting new kinds of products is difficult – abstract interface fixes the set of products that can be

created

5. Supporting new kinds of products requires extending the factory interface, which involves changing the

abstract class and all of its subclasses

IMPLEMENTATION

1. Factories as singletons – only one instance of concrete factory / product family is needed

2. Create the products

• Concrete product subclasses actually create them

Eg., MOTIF window, MOTIF scroll bar

• Concrete family can be implemented using prototype pattern

• Prototype based approach eliminates the need for a new factory class

Eg., prototype based factory in small talk

 dictionary : part catalog

 Method :

 make : part name

 (part catalog at : part name)copy

 Adding parts :

 add part : part template named : part name

 part catalog at : part name put:part template

3. Define extendable factories

 Add a parameter to operations that create object

Eg., make- include kind of object to create

 Addition of parameter can be done with factory method pattern

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 57

SAMPLE CODE

Class maze factory {

 public :

 maze factory ()

 virtual maze * make maze const

 { return new maze () }

 virtual mall * make mall () const

 { return new mall () }

 virtual room * make room(int n) const

 { return new room (n) }

KNOWN USES

• Achieves portability across various window systems

 eg., x windows, seen view

RELATED PATTERNS

• Factory method

• Prototype

• Singleton

3. Prepare class diagram showing relationship among the classes. Include association, aggregation and

 generalization. Also add attributes and operations to the class diagram.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 58

4. Develop the system for the inventory control management based on Booch Methodology with the

 following requirements:

i) Keep track of the stocks in the stores.

ii)Tracking the orders as they are received.

 The activity diagram is made to understand the flow of activities and mainly used by the business users.

 The following diagram is drawn with the four main activities:

 Send order by the customer

 Receipt of the order

 Confirm order

 Dispatch order

 After receiving the order request condition checks are performed to check if it is normal or special order.

 After the type of order is identified dispatch activity is performed and that is marked as the termination

of the process.

 The purpose of identifying the relationships among classes and objects is to solidify the boundaries of

and to recognize the collaborators with each abstraction identified earlier in the micro process.

 This activity formalizes the conceptual as well as physical separations of concern among abstractions

begun in the previous step.

 Expressing the existence of an association identifies some semantic dependency between two

abstractions, as well as some ability to navigate from one entity to another.

o As part of design, we apply this step to specify the collaborations that: form the mechanisms of

our architecture, as well as the higher-level clustering of classes into categories and modules

into subsystems.

 As implementation proceeds, we refine relationships such as associations into more

 Implementation-oriented relationships, including instantiation and use.

o Each association has two association ends; each end is attached to one of the classes in the

association.

o An end can be explicitly named with a label.

o This label is called a role name. (Association ends are often called roles.)

o An association end also has multiplicity, which is an indication of how many objects may

participate in the given relationship.

o interface for an Order class:

 class Order {

 public Customer getCustomer();

 public Set getOrderLines();

 class Customer {

 private Set _orders;

o If navigability exists in only one direction, we call the association a unidirectional association.

A bidirectional association contains navigability in both directions.

o An association represents a permanent link between two objects

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 59

(i) Tracking the orders as they are received.

 one transition can be taken out of a given state, so we intend the guards to be mutually exclusive for any

event.

1. If we have not checked all items, we get the next item and return to the Checking state to check it.

2. If we have checked all items and they were all in stock, we transition to the Dispatching state.

3. If we have checked all items but not all of them were in stock, we transition to the Waiting state.

Figure (a) State Diagram without Super states

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 60

Figure (b) State Diagram with Super states

(ii) Deliver the orders.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 61

4. Explain in detail about the unified approach in object oriented methodologies.

 The unified approach (UA) establishes a unifying and unitary framework for utilizing the UML to

describe, model and document the software development process.

 It combines the best practices, processes, methodologies and guidelines along with UML notations for

better understanding of OO concept and system development.

 It involves

 Use- case driven development

 Object-oriented analysis

 Object - oriented design

 Incremental development and prototyping

 Continuous testing

 The methods and technology employed include

 UML for modeling

 Layered approach

 Repository for object - oriented system development

 Patterns and frameworks

 Component - based development

 It allows iterative development by allowing to move between design and the modeling or analysis

phases.

 It makes backtracking easy and departs from teh linear waterfall process.

 Object - oriented Analysis

 Analysis is the process of extracting the needs of a system to satisfy the users' requirements.

 The goal of OOA is to understand the domain of the problem and the system's responsibilities by

understanding how the users use / will use the system.

 The models concentrate on describing what the system does rather than how it does it.

 Separating the behaviour of a system from the way it is implemented requires viewing the system from

the user's perspective.

 Steps in OOA process

 Identify the actors

 Develop a simple business process model using UML activity diagram

 Develop the use case

 Develop interaction diagram

 Identify classes

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 62

 Object - Oriented Design (OOD)

 UA combines the analysis and interaction diagrams, object diagrams, domain models for the design of

the application using object oriented design.

 Such designs can be developed in a way that they ae traceable across requirements, analysis, design,

coding and testing.

 OOD process consists of

 Designing classes, their attributes, methods, associations, structures and protocols

 Apply design axioms

 Design the access layer

 User satisfaction and usability test based on the usage / use cases

 Iterate and refine the design

 Iterative development and continuous testing

 Iterate the development process until the user is satisfied with the system development.

 Apply testing effectively so that it uncovers the design weaknesses and suggests ways with which the

system's quality is improved.

 Continue this refining cycle through the development process until the developer is satisfied with the

results.

 During this iterative process, the prototypes will be incrementally transformed into the actual

application.

 Modeling based on the Unified Modeling Language

 The UML merges the best of the notations used by the analysis and design methodologies

 The UA uses the UML to describe and model the analysis and design phases of system development.

 UA Proposed Repository

 Create a repository that allows the maximum reuse of previous experience and previously defined

objects, patterns, frameworks and user interfaces.

 The UA's assumption is that creating additional applications will require no more than assembling

components from the library.

 Microsoft repository, VisualAge, PowerBuilder, Visual C++ and Delphi provide such capability.

 These repositories contain all objects that have been previously defined and can be reused for newer

applications.

 If a new object is designed, it has to be stored in the main repository for future use.

 Layered Approach to Software Development

 Systems can be developed with CASE tools or C/S architecture / Two - tier architecture

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 63

 In a two - layered system, user interface screens are tied to the data through routines that sit directly

behind the screen

 The routines required to access the data must exist within every screen.

 Any change to the business logic must be accomplished in every screen that deals with that portion of

the business.

6. Draw the following diagrams and explain

 i) Sequence diagram for ticket vending machine in railway station.

 ii) Use case and activity diagrams for the library information system

 Steps

 The customer inserts coins in to the vending machine.

 The vending machine system verifies the coins.

 If the amount is correct and valid, it closes the coin slot

 The audio tone and LED light blinks so that the customer can select the place of the journey.

 The vending machine checks the availability of the ticket

 It confirms the chosen place.

 It dispenses the ticket.

 It turns LED lights off except for the chosen place.

 It also educes the ticket count by one.

 It checks the ticket count.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 64

 ii) Use case and activity diagrams for the library information system

 The primary actors are member, circulation clerk and the secondary actor is the supplier.

 The scenario are borrow books, get an interlibrary loan, return books, do research, read books,

newspaper, check library card, purchase supplies

 The scenario get an interlibrary loan can have an additional extends association of another scenario

borrow books.

 The " get an interlibrary loan", "borrow books" and " return books" have uses association " check library

card"

Activity diagram

 Start

 The assets available in the library are checked based on the asset type

 Check whether the asset type is "books" , If so, enter book information, set the due date for 21 days

 If the asset type is " audio cassettes", enter its relevant details, set the due date for 21 days

 If the asset type is "magazine", enter those details, set the due date for two days

 If the asset type is " microfilm:, enter those details, set the due date for three days

 Otherwise, enter those details and set the due date

 If the asset type is newspaper, enter the details

 Terminate and end

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 65

7. Describe in detail about the interaction diagrams with an example.

• Interaction diagrams

• Models that describe how groups of objects collaborate in some behavior.

• Captures the behavior of a single use case.

• The diagram shows a number of example objects and the messages that are passed between these objects

within the use case.

• Sequence diagrams

• Within a sequence diagram, an object is shown as a box at the top of a dashed vertical line

• This vertical line is called the object's lifeline

• Each message is represented by an arrow between the lifelines of two objects.

• The order in which these messages occur is shown top to bottom on the page.

• Self-call, a message that an object sends to itself, by sending the message arrow back to the same

lifeline.

• There is a condition indicates when a message is sent

• The iteration marker, shows that a message is sent many times to multiple receiver objects, as would

happen when you are iterating over a collection.

• You can show the basis of the iteration within brackets, such as *[for all order lines].

• The above figure includes a return, indicates a return from a message not a new message

• Returns differ from the regular messages in that the line is dashed.

• Concurrent Processes and activation

• When a Transaction is created, it creates a Transaction Coordinator to coordinate the checking of the

Transaction.

• This coordinator creates a number (in this case, two) of Transaction Checker objects, each of which is

• This vertical line is called the

object's lifeline

• Each message is represented by an

arrow between the lifelines of two

objects.

• The order in which these messages

occur is shown top to bottom on the

page.

• self-call, a message that an object

sends to itself, by sending the

message arrow back to the same

lifeline.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 66

responsible for a particular check.

• When a Transaction is created, it creates a Transaction Coordinator to coordinate the checking of the

Transaction.

• This coordinator creates a number (in this case, two) of Transaction Checker objects, each of which is

responsible for a particular check.

• An asynchronous message can do one of three things:

• 1. Create a new thread, in which case it links to the top of an activation

• 2. Create a new object

• 3. Communicate with a thread that is already running

• Object deletion is shown with a large X. Objects can self-destruct

• They can be destroyed by another message

• Collaboration diagrams.

• The spatial layout allows you to show other things more easily.

• You can show how the objects are linked together and use the layout to overlay packages or other

information.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 67

 7. Describe in detail about the interaction diagrams with an example.

• Component diagram

• It shows the various components in a system and their dependencies.

• A component represents a physical module of code

• The dependencies among the components show how changes to one

• component may cause other components to change.

• Used to describe components within a software system.

• Components in UML are physical such as source code file, Libraries, dynamic components or

executable programs.

• The six software components are

o Main. Cpp Source. Lib

o Main. Obj Source. Cpp

o Wincrt. Dll Program.exe

• Deployment Diagrams

main.cpp main.obj winert.dll

source.cpp source.lib pgm.exe

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 68

– A deployment diagram shows the physical relationships among software and hardware

components in the delivered system.

– Each node on a deployment diagram represents some kind of computational unit—in most cases,

a piece of hardware.

– The hardware may be a simple device or sensor, or it could be a mainframe.

7. Explain in detail about the implementation diagrams/ physical diagrams with examples.

Refer previous questions

9. Discuss in detail about the following with suitable examples.(MAY 2015)

 i) Use case diagram

 ii) Class diagram.

• A scenario is a sequence of steps describing an interaction between a user and a system.

• The customer browses the catalog and adds desired items to the shopping basket.

• When the customer wishes to pay, the customer describes the shipping and credit card information and

confirms the sale.

• The system checks the authorization on the credit card and confirms the sale both immediately and with

a follow-up email.

• Variations on the sequence

• Buy a Product

• 1. Customer browses through catalog, selects items to buy

• 2. Customer goes to check out

• 3. Customer fills in shipping information (address; next-day or 3-day delivery)

• 4. System presents full pricing information, including shipping

• Customer fills in credit card information

• 6. System authorizes purchase

• 7. System confirms sale immediately

• 8. System sends confirming email to customer

• Alternative: Authorization Failure

• At step 6, system fails to authorize credit purchase

• Allow customer to re-enter credit card information and re-try

• Alternative: Regular Customer

• 3a. System displays current shipping info, pricing information, last 4 digits of credit card information

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 69

• 3b. Customer may accept or override these defaults

• Return to primary scenario at step 6

 (ii) Class diagram.

• A class diagram describes the types of objects in the system.

• Various kinds of static relationships that exist among them.

• principal kinds of static relationships:

• Associations

• for example, a customer may rent a number of videos

• subtypes (a nurse is a kind of person)

10. i) What are the different models that are present in OMT? Explain them in detail.(MAY 2015)

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 70

 ii) What is pattern ? List and explain the essentials components of a pattern to recognize it
 properly.

OBJECT MODELING TECHNIQUE (OMT) Rum Baugh

• Describes a method for analysis, design and implementation of a system

• Fast intuitive approach

 identify and model all the object

 class , attributes , methods – defined easily

• Dynamic behavior of object is described – OMT dynamic model

 Process description

 Consumer – Producer association

 PHASES – OMT

2. Analysis – outcomes- object , dynamic and functional model

4. System design – Basic architecture of the system

• High level strategy decision

 Static

5. Object design – Design, Document Dynamic

 Functional

5. Implementation – Reusable, extendible code

• OMT separates modeling into 3 phases viz.,

• Object model – presented by object model & data dictionary

• Dynamic model – state diagrams, event flow diagrams

• Functional model – data flow & constraints

 OBJECT MODEL

• Describes the structure of object

 identity, relationships to other object

 attributes, operations

• Uses object diagrams

 obj diagram – classes interconnected by associations

 each class – set of object

 association – establishes relationships among the classes

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 71

OMT – DYNAMIC MODEL

• Detailed and comprehensive model

• Depicts various states , transitions , events , actions

• State transition diagram – n/w of states , events

 Each state receives one or more events at which time transition results in next state

Eg., dynamic model – Banking system

OMT – FUNCTIONAL MODEL

• DFD shows flow of data between different processes

 - any function / process

 - data flow- direction of data element / movement

 - external entity-source / sink

 - data store-location where data are stored

Eg., ATM

OBJECT MODELING – BOOCH METHODOLOGY

State transition diagram – eg., alarm class

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 72

 (ii) What is pattern? List and explain the essentials components of a pattern to recognize it

 properly.

 Design patterns must have a predefined template.
• The template must specify the intent, the other name of the design pattern,
• Motivation, structure of the design pattern,
• Implementation, known uses of the design pattern
• Applicability, other uses, participants, related design patterns if any.
• Selection of the design pattern can be done based on either creational , structural or behavioural patterns.
 Eg., Abstract factory, decorator, Façade, proxy, state.
 Pattern Name and Classification: A descriptive and unique name that helps in identifying and

referring to the pattern.

 Intent: A description of the goal behind the pattern and the reason for using it.

 Also Known As: Other names for the pattern.

 Motivation (Forces): A scenario consisting of a problem and a context in which this pattern can be

used.

 Applicability: Situations in which this pattern is usable; the context for the pattern.

 Structure: A graphical representation of the pattern. Class diagrams and Interaction diagrams may be

used for this purpose.

 Participants: A listing of the classes and objects used in the pattern and their roles in the design.

 Collaboration: A description of how classes and objects used in the pattern interact with each other.

 Consequences: A description of the results, side effects, and trade offs caused by using the pattern.

 Implementation: A description of an implementation of the pattern; the solution part of the pattern.

 Sample Code: An illustration of how the pattern can be used in a programming language.

 Known Uses: Examples of real usages of the pattern.

 Related Patterns: Other patterns that have some relationship with the pattern; discussion of the

differences between the pattern and similar patterns.

11. i) Draw the class diagram for banking system.(May 2016)

 ii) Draw the sequence diagram for the amount withdraw from ATM.

Refer Previous answers

12. What are patterns and frameworks? Discuss with examples. (Dec 2016)

 Refer Previous answers

UNIT – III

1. Use noun phrase approach to identify the objects from the grocery store problem.

 A store wants to automate its inventory. It has point-of-sale terminals that can record all of the

 items and quantities that a customer purchases. Another terminal is also available for the customer

 service desk to handle returns. It has a similar terminal in the loading deck to handle arriving

 shipments from suppliers. The meat department and produce department have terminals to enter

 losses/discounts due to spoilage.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 73

 A store wants to automate its inventory. It has point-of-sale terminals that can record all of the items and

quantities that a customer purchases. Another terminal is also available for the customer service desk to handle

returns. It has a similar terminal in the loading deck to handle arriving shipments from suppliers. The meat

department and produce department have terminals to enter losses/discounts due to spoilage.

Step.1:

Identify nouns

Store

Inventory

 Point-of-sale

terminal

Terminals

Items

Quantity

Purchase

Customer

Customer service

desk

Handle returns

Returns

Loading dock

Shipment

Handle shipment

Suppliers

Meat department

Step.2:

Eliminate

irrelevant nouns

Store

Point-of-sale

terminal

inventory

Item

Customer

Customer service

desk

Handle returns

Returns

Handle shipment

Shipment

Meat department

Produce

department

Department

Enter losses

Enter discount

Step.3

Eliminate

redundancies

Store

Point-of-sale terminal

Item

Customer service desk

Handle returns

Handle shipment

Meat department

Produce department

Enter losses

Enter discount

Step.4:

The final set of

classes objects after

the elimination

process.

Point-of-sale

terminal

Item

Handling return

Handling shipment

Enter losses

Enter discount

Meat department

Produce department

Store

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 74

2. Discuss with an example use case driven approach for object oriented analysis.(Dec 2016)

 Explain generalization and specialization with an example.(Dec 2016)

 Outline the activities carried out during object oriented analysis.

• OOA Uses actors, use cases that describe the system.

• Actors

• External factors that interact with the system.

• Use Cases

• Scenario that describe how actors use the system

• Steps in identifying Use cases

• Identify the actors

• Develop a simple business process model using UML activity Diagram.

• Develop the use case.

• What are the users doing with the system.

• What will be the users doing with the system.

• Comprehensive documentation of the system

• Prepare interaction diagram.

• Classification

• Identify classes , relationships, attributes , methods.

• Use cases provide scenario for understanding the specific requirements

• It Provides interaction between users and system.

•Captures the goal of the user and responsibility of the user to the system.

•Shows various courses of the events to be performed.

•Defines what happens in the system when the use case is performed.

•Discovers classes and relationships among the subsystems of the system.

•Each use case must have a name and a brief technical description.

•Provides an external view of an application.

Produce

department

Department

Enter losses

Enter discount

Spoilage

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 75

•Use cases

• A sequence of transactions in a system.

• Yields results of measurable values to an individual actor of the system.

• Provides a special flow of events.

• Group of various courses of events are represented as an use case class.

• Borrow book

• Whether the book is available in the library

• Whether the user is a member of the library.

• Actors

• User playing the role with respect to the system.

• Think about roles than people.

• E.g., First class / Business class passenger.

• Actors are the key to find the use case.

• Single actor may perform several use cases.

• An use case may have several actors.

• An external system that needs information from a current system

• get a value from the use case or from the participant class.

• Actors communicate with the system’s use cases.

• A measurable value.

• Evaluate the performance of the use cases in terms of price/ cost.

• E.g., Borrowing book – value for the member of the library.

• Atomic set of activities that are performed either fully or not at all.

• Triggered by a stimulus from an actor of the system.

• Uses and extends association

• Extends association is used when an use case similar to another use case does a bit more

• specific task.

• Extends results in inheritance.

• E.g., Borrow book, get a interlibrary loan.

• Uses

• Extracts common behaviour for sub flows.

• Creates an use case of its own.

• Abstract use case.

• Not complete, has no initiation actor.

• Concrete use case

• Interacts with others.

• Variations (Fowler & Scott)

• Explore simple and normal use case first.

• For every step in that use case, ask

• what to go wrong.

• How might their work be done differently.

3. i)For a Credit card system, every user has to be validated with a PIN number to make a transaction.

 A customer is allowed three times to validate card giving the correct pin number. Show the usecase

 representation for the same. (May 2017)

Use Cases for Example ATM System

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 76

System Startup Use Case

The system is started up when the operator turns the operator switch to the "on" position. The operator will be

asked to enter the amount of money currently in the cash dispenser, and a connection to the bank will be

established. Then the servicing of customers can begin.

[Interaction Diagram]

System Shutdown Use Case

The system is shut down when the operator makes sure that no customer is using the machine, and then turns

the operator switch to the "off" position. The connection to the bank will be shut down. Then the operator is free

to remove deposited envelopes, replenish cash and paper, etc.

[Interaction Diagram]

Session Use Case

A session is started when a customer inserts an ATM card into the card reader slot of the machine. The ATM

pulls the card into the machine and reads it. (If the reader cannot read the card due to improper insertion or a

damaged stripe, the card is ejected, an error screen is displayed, and the session is aborted.) The customer is

asked to enter his/her PIN, and is then allowed to perform one or more transactions, choosing from a menu of

possible types of transaction in each case. After each transaction, the customer is asked whether he/she would

like to perform another. When the customer is through performing transactions, the card is ejected from the

machine and the session ends. If a transaction is aborted due to too many invalid PIN entries, the session is also

aborted, with the card being retained in the machine.

The customer may abort the session by pressing the Cancel key when entering a PIN or choosing a transaction

type.

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Startup
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Shutdown

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 77

[Interaction Diagram]

Transaction Use Case

Note: Transaction is an abstract generalization. Each specific concrete type of transaction implements certain

operations in the appropriate way. The flow of events given here describes the behavior common to all types of

transaction. The flows of events for the individual types of transaction (withdrawal, deposit, transfer, inquiry)

give the features that are specific to that type of transaction.

A transaction use case is started within a session when the customer chooses a transaction type from a menu of

options. The customer will be asked to furnish appropriate details (e.g. account(s) involved, amount). The

transaction will then be sent to the bank, along with information from the customer's card and the PIN the

customer entered.

If the bank approves the transaction, any steps needed to complete the transaction (e.g. dispensing cash or

accepting an envelope) will be performed, and then a receipt will be printed. Then the customer will be asked

whether he/she wishes to do another transaction.

If the bank reports that the customer's PIN is invalid, the Invalid PIN extension will be performed and then an

attempt will be made to continue the transaction. If the customer's card is retained due to too many invalid PINs,

the transaction will be aborted, and the customer will not be offered the option of doing another.

If a transaction is cancelled by the customer, or fails for any reason other than repeated entries of an invalid

PIN, a screen will be displayed informing the customer of the reason for the failure of the transaction, and then

the customer will be offered the opportunity to do another.

The customer may cancel a transaction by pressing the Cancel key as described for each individual type of

transaction below.

All messages to the bank and responses back are recorded in the ATM's log.

[Interaction Diagram]

Withdrawal Transaction Use Case

A withdrawal transaction asks the customer to choose a type of account to withdraw from (e.g. checking) from a

menu of possible accounts, and to choose a dollar amount from a menu of possible amounts. The system

verifies that it has sufficient money on hand to satisfy the request before sending the transaction to the bank. (If

not, the customer is informed and asked to enter a different amount.) If the transaction is approved by the bank,

the appropriate amount of cash is dispensed by the machine before it issues a receipt. (The dispensing of cash is

also recorded in the ATM's log.)

A withdrawal transaction can be cancelled by the customer pressing the Cancel key any time prior to choosing

the dollar amount.

[Interaction Diagram]

Deposit Transaction Use Case

A deposit transaction asks the customer to choose a type of account to deposit to (e.g. checking) from a menu of

possible accounts, and to type in a dollar amount on the keyboard. The transaction is initially sent to the bank to

verify that the ATM can accept a deposit from this customer to this account. If the transaction is approved, the

machine accepts an envelope from the customer containing cash and/or checks before it issues a receipt. Once

the envelope has been received, a second message is sent to the bank, to confirm that the bank can credit the

customer's account - contingent on manual verification of the deposit envelope contents by an operator later.

(The receipt of an envelope is also recorded in the ATM's log.)

A deposit transaction can be cancelled by the customer pressing the Cancel key any time prior to inserting the

envelope containing the deposit. The transaction is automatically cancelled if the customer fails to insert the

envelope containing the deposit within a reasonable period of time after being asked to do so.

[Interaction Diagram]

Transfer Transaction Use Case

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Session
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Transaction
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Withdrawal
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Deposit

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 78

A transfer transaction asks the customer to choose a type of account to transfer from (e.g. checking) from a

menu of possible accounts, to choose a different account to transfer to, and to type in a dollar amount on the

keyboard. No further action is required once the transaction is approved by the bank before printing the receipt.

A transfer transaction can be cancelled by the customer pressing the Cancel key any time prior to entering a

dollar amount.

[Interaction Diagram]

Inquiry Transaction Use Case

An inquiry transaction asks the customer to choose a type of account to inquire about from a menu of possible

accounts. No further action is required once the transaction is approved by the bank before printing the receipt.

An inquiry transaction can be cancelled by the customer pressing the Cancel key any time prior to choosing the

account to inquire about.

[Interaction Diagram]

Invalid PIN Extension

An invalid PIN extension is started from within a transaction when the bank reports that the customer's

transaction is disapproved due to an invalid PIN. The customer is required to re-enter the PIN and the original

request is sent to the bank again. If the bank now approves the transaction, or disapproves it for some other

reason, the original use case is continued; otherwise the process of re-entering the PIN is repeated. Once the

PIN is successfully re-entered, it is used for both the current transaction and all subsequent transactions in the

session. If the customer fails three times to enter the correct PIN, the card is permanently retained, a screen is

displayed informing the customer of this and suggesting he/she contact the bank, and the entire customer

session is aborted.

If the customer presses Cancel instead of re-entering a PIN, the original transaction is cancelled.

iii) Write short notes on the following CRC approach for identifying classes.

A Class Responsibility Collaborator (CRC) model (Beck & Cunningham 1989; Wilkinson 1995;

Ambler 1995) is a collection of standard index cards that have been divided into three sections, as

depicted in Figure 1. A class represents a collection of similar objects, a responsibility is something

that a class knows or does, and a collaborator is another class that a class interacts with to fulfill its

responsibilities. Figure 2 presents an example of two hand-drawn CRC cards.

Figure 1. CRC Card Layout.

Figure 2. Hand-drawn CRC Cards.

Although CRC cards were originally introduced as a technique for teaching object-oriented

concepts, they have also been successfully used as a full-fledged modeling technique. My

experience is that CRC models are an incredibly effective tool for conceptual modeling as well as

for detailed design. CRC cards feature prominently in eXtreme Programming (XP) (Beck 2000) as a

design technique. My focus here is on applying CRC cards for conceptual modeling with your

stakeholders.

A class represents a collection of similar objects. An object is a person, place, thing, event, or

concept that is relevant to the system at hand. For example, in a university system, classes would

represent students, tenured professors, and seminars. The name of the class appears across the top of

a CRC card and is typically a singular noun or singular noun phrase, such as Student, Professor, and

Seminar. You use singular names because each class represents a generalized version of a singular

object. Although there may be the student John O'Brien, you would model the class Student. The

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Transfer
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/Interactions.html#Inquiry

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 79

information about a student describes a single person, not a group of people. Therefore, it makes

sense to use the name Student and not Students. Class names should also be simple. For example,

which name is better: Student or Person who takes seminars?

A responsibility is anything that a class knows or does. For example, students have names,

addresses, and phone numbers. These are the things a student knows. Students also enroll in

seminars, drop seminars, and request transcripts. These are the things a student does. The things a

class knows and does constitute its responsibilities. Important: A class is able to change the values

of the things it knows, but it is unable to change the values of what other classes know.

Sometimes a class has a responsibility to fulfill, but not have enough information to do it. For

example, as you see in Figure 3 students enroll in seminars. To do this, a student needs to know if a

spot is available in the seminar and, if so, he then needs to be added to the seminar. However,

students only have information about themselves (their names and so forth), and not about seminars.

What the student needs to do is collaborate/interact with the card labeled Seminar to sign up for a

seminar. Therefore, Seminar is included in the list of collaborators of Student.

Figure 3. Student CRC card.

Collaboration takes one of two forms: A request for information or a request to do something. For

example, the card Student requests an indication from the card Seminar whether a space is available,

a request for information. Student then requests to be added to the Seminar, a request to do

something. Another way to perform this logic, however, would have been to have Student simply

request Seminar to enroll himself into itself. Then have Seminar do the work of determining if a seat

is available and, if so, then enrolling the student and, if not, then informing the student that he was

not enrolled.

So how do you create CRC models? Iteratively perform the following steps:

Find classes. Finding classes is fundamentally an analysis task because it deals with identifying the

building blocks for your application. A good rule of thumb is that you should look for the three-to-

five main classes right away, such as Student, Seminar, and Professor in Figure 4. I will sometimes

include UI classes such as Transcript and Student Schedule, both are reports, although others will

stick to just entity classes. Also, I'll sometimes include cards representing actors when my

stakeholders are struggling with the concept of a student in the real world (the actor) versus the

student in the system (the entity).

Find responsibilities. You should ask yourself what a class does as well as what information you

wish to maintain about it. You will often identify a responsibility for a class to fulfill a collaboration

with another class.

Define collaborators. A class often does not have sufficient information to fulfill its responsibilities.

Therefore, it must collaborate (work) with other classes to get the job done. Collaboration will be in

one of two forms: a request for information or a request to perform a task. To identify the

collaborators of a class for each responsibility ask yourself "does the class have the ability to fulfill

this responsibility?". If not then look for a class that either has the ability to fulfill the missing

functionality or the class which should fulfill it. In doing so you'll often discover the need for new

responsibilities in other classes and maybe even the need for a new class or two.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 80

Move the cards around. To improve everyone's understanding of the system, the cards should be

placed on the table in an intelligent manner. Two cards that collaborate with one another should be

placed close together on the table, whereas two cards that don't collaborate should be placed far

apart. Furthermore, the more two cards collaborate, the closer they should be on the desk. By having

cards that collaborate with one another close together, it's easier to understand the relationships

between classes.

Figure 4. CRC Model.

How do you keep your CRC modeling efforts agile? By following the AM practice Model in Small

Increments. The best way to do this is to create a CRC model for a single requirement, such as a

user story, business rule, or system use case, instead of the entire collection of requirements for your

system. Because CRC cards are very simple tools they are inclusive, enabling you to follow AM's

Active Stakeholder Participation practice.

It's important to recognize that a CRC model isn't carved in stone. When you evolve it into a UML

class diagram, or perhaps straight into code, you'll change the schema over time. Responsibilities

will be reorganized, new classes will be introduced, existing classes will disappear, and so on. This

is what happens when you take an evolutionary approach to development.

3. Appraise the steps in modelling a usecase diagram with an example.(May 2017)

Refer previous questions

4. Explain in detail about how to identify object relationships, attributes and methods with an

 example.

 Types of relationships among objects

1. Association

2. Super-sub structure

3. Aggregation and a-part-of structure

Association

• Physical or conceptual connection b/w two or more objects

• Identifying associations

• Begins by analyzing the interactions b/w classes

• Following questions help us to identify associations

• Is the class capable of fulfilling required task by itself?

• If not, what does it need?

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 81

• From what other class can it acquire what it needs?

• Extract all associations from problem statement and get them down on paper

• Refine them later

• Guidelines for identifying association

• A Dependency between 2 or more classes may be an association.

• Association often corresponds to a verb or prepositional phrase.

• Eg. Next to, works for

• A Reference from one class to another is an association

• Taken from general knowledge

• Common Association Patterns

• Location Association

• next to, part of, contained in

• Eg.

• Communication Association

• talk to, order to

• Eg.

• Eliminate Unnecessary Associations

• Implementation Association

• Defer implementation - specific associations to the design phase.

• It is concerned with the implementation or design of the class within certain programming or

development environment.

• Ternary Associations

• Ternary or n-ary association is an association among more than two classes.

• It complicates the representations.

• When possible, such ternary associations must be reduced to binary associations.

• Directed actions / derived associations

• It is defined in terms of other associations.

• Since they are redundant, these associations must be avoided.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 82

Super-Sub class Relationships / Generalization Hierarchy

• It represents inheritance relationships between related classes, and the class hierarchy determines the

lines of inheritance between classes

• It allows objects to be built form other objects

• It helps to identify commonality of objects when constructing new classes

• Parent class – also known as base or super class or ancestor

• The super - sub class hierarchy is based on inheritance which is programming by extension

• Inheritance allows classes to share and reuse behaviour and attributes

• A class inherits the behaviours and attributes of all of its super classes.

• Guidelines

– Top-down

• Look for noun phrases composed of various adjectives in the class name

• Specialize only when subclasses have significant behavior

• Avoid excessive refinement

– Bottom-up

• Look for classes with similar attributes or methods.

• Group them by moving the common attributes and methods to an abstract class

• Don't force classes to fit a preconceived generalization structure

– Reusability

• Move attributes and methods as high as possible in the hierarchy

• Don't create very specialized classes at the top of the hierarchy.

– Multiple Inheritance

• Avoid excessive use of it

• It is highly complicated structure when several ancestors define the method.

• It is more difficult to understand the program written in multiple inheritance.

• Inherit from the most appropriate class and add an object of another class as an attribute.

• It can be represented as an aggregation of a single inheritance and aggregation.

A-part-of relationships – aggregation

• Represents a situation where a class consists of several component classes

• A class that is composed of other classes does not behave like its parts; it behaves differently.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 83

• Properties

– Transitivity

• A is part of B and B is part of C, then A is part of C

• Eg. Carburetor part of engine, engine is part of car; carburetor part of car

– Antisymmetry

• A is part of B, B is not part of A

• Eg. Engine part of car, car not part of engine

• Does the part class belong to a problem domain?

• Is the part class within the system's responsibilities?

• Does the part class capture more than a single value?

• If it captures only a single value, include it as an attribute with the whole class

• Does it provide a useful abstraction in dealing with the problem domain?

• Guidelines

– Assembly

• Constructed from its parts and an assembly-part situation physically exists

• Eg. French onion soup is an assembly of onion, butter, cheese

– Container

• A physical whole encompasses but is not constructed from physical parts

• -Eg. House container for furniture and appliances

– Collection-member

• A conceptual whole encompasses parts that may be physical or conceptual

• Eg. Football team is a collection of players

Identifying attributes & methods

• Identifying attributes of a system's classes starts with understanding the system's responsibilities.

• This is done by developing use cases and the desired characteristics of the applications such as

determining what information users need from the system.

• What information about an object should we keep track of?

– Attributes

• What services must a class provide?

– methods

6. Discuss the difficulty of classification. Briefly explain the classical and modern approaches used for

 identifying classes and objects.(May 2016)

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 84

Guidelines

– Nouns followed by prepositional phrases (Eg. Cost of), adjectives or adverbs

– Keep class simple; state only enough attributes

– use your knowledge of application domain and real world to find them

– Omit derived attributes

– Do not carry discovery of attributes to excess. Add more attributes in subsequent iterations

• Methods & messages

• Every piece of data, or object, is surrounded by a rich set of routines called methods

• Define methods by analyzing UML diagrams and use cases

7. Explain the following: (i) Give a detailed note on super-sub class relationship and a-part-of

 relationship. Ii) Guidelines for identifying super-sub relationships(May 2016)

 Refer the previous answers

8. Consider a Car Company which sell both the used cars and new cars of various model, design the

 system and give the Use case, Class diagrams with the following requirements.

 i) Customers are allowed to perform test drive before purchasing the car.

 ii)The Company also sell car parts and do servicing.

 iii)The customer either purchases the parts available in the part department directly or the service

 department can replace the parts of the car during servicing the car.

Customers are allowed to perform test drive before purchasing the car.

Class Diagram

9. Which relation is called as part of relation? What are the major properties of it and how to

 identify it? explain with suitable examples.

• Super-sub class relationship and a-part-of relationship

• It represents inheritance relationships between related classes, and the class hierarchy determines the

lines of inheritance between classes

• It allows objects to be built form other objects

• It helps to identify commonality of objects when constructing new classes

• Parent class – also known as base or super class or ancestor

• The super - sub class hierarchy is based on inheritance which is programming by extension

Buy car

Customer

test drive

sell car

Company

service car

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 85

• Inheritance allows classes to share and reuse behaviour and attributes

• A class inherits the behaviours and attributes of all of its super classes.

• Guidelines

– Top-down

• Look for noun phrases composed of various adjectives in the class name

• Specialize only when subclasses have significant behavior

• Avoid excessive refinement

– Bottom-up

• Look for classes with similar attributes or methods.

• Group them by moving the common attributes and methods to an abstract class

• Don't force classes to fit a preconceived generalization structure

– Reusability

• Move attributes and methods as high as possible in the hierarchy

• Don't create very specialized classes at the top of the hierarchy.

– Multiple Inheritance

• Avoid excessive use of it

• It is highly complicated structure when several ancestors define the method.

• It is more difficult to understand the program written in multiple inheritance.

• Inherit from the most appropriate class and add an object of another class as an attribute.

• It can be represented as an aggregation of a single inheritance and aggregation.

A-part-of relationships – aggregation

• Represents a situation where a class consists of several component classes

• A class that is composed of other classes does not behave like its parts; it behaves differently.

• Properties

– Transitivity

• A is part of B and B is part of C, then A is part of C

• Eg. Carburetor part of engine, engine is part of car; carburetor part of car

– Antisymmetry

• A is part of B, B is not part of A

• Eg. Engine part of car, car not part of engine

• Does the part class belong to a problem domain?

• Is the part class within the system's responsibilities?

• Does the part class capture more than a single value?

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 86

• If it captures only a single value, include it as an attribute with the whole class

• Does it provide a useful abstraction in dealing with the problem domain?

• Guidelines

– Assembly

• Constructed from its parts and an assembly-part situation physically exists

• Eg. French onion soup is an assembly of onion, butter, cheese

– Container

• A physical whole encompasses but is not constructed from physical parts

• -Eg. House container for furniture and appliances

– Collection-member

• A conceptual whole encompasses parts that may be physical or conceptual

• Eg. Football team is a collection of players

10. i) Explain the noun phrase approach for classification and identification of objects (May 2015)

 ii)Write about guidelines for developing effective documentation

 Refer the previous answers

 11. For a Credit card system, every user has to be validated with a PIN number to make a

 transaction. A customer is allowed three times to validate card giving the correct pin

 number. Show the usecase representation for the same. (May 2017)

This UML use case diagram example shows some use cases for a system which processes credit cards.

Credit Card Processing System (aka Credit Card Payment Gateway) is a subject, i.e. system under design or

consideration. Primary actor for the system is a Merchant’s Credit Card Processing System. The merchant

submits some credit card transaction request to the credit card payment gateway on behalf of a customer. Bank

which issued customer's credit card is actor which could approve or reject the transaction. If transaction is

approved, funds will be transferred to merchant's bank account.

Authorize and Capture use case is the most common type of credit card transaction. The requested amount of

money should be first authorized by Customer's Credit Card Bank, and if approved, is further submitted for

https://www.uml-diagrams.org/use-case-subject.html
https://www.uml-diagrams.org/use-case-actor.html

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 87

settlement. During the settlement funds approved for the credit card transaction are deposited into

the Merchant's Bank account.

In some cases, only authorization is requested and the transaction will not be sent for settlement. In this case,

usually if no further action is taken within some number of days, the authorization expires. Merchants can

submit this request if they want to verify the availability of funds on the customer’s credit card, if item is not

currently in stock, or if merchant wants to review orders before shipping.

Capture (request to capture funds that were previously authorized) use case describes several scenarios when

merchant needs to complete some previously authorized transaction - either submitted through the payment

gateway or requested without using the system, e.g. using voice authorization.

UML use case diagram example for a credit cards processing system.

Credit use case describes situations when customer should receive a refund for a transaction that was either

successfully processed and settled through the system or for some transaction that was not originally submitted

through the payment gateway.

Void use case describes cases when it is needed to cancel one or several related transactions that were not yet

settled. If possible, the transactions will not be sent for settlement. If the Void transaction fails, the original

transaction is likely already settled.

Verify use case describes zero or small amount verification transactions which could also include verification

of some client's data such as address.

Briefly explain about use case model for library mgt. system. (May2016)

UML Use Case Diagram for Library Management System

Even in this age of high-powered computers, an old-fashioned library has its place. To find information, a patron and librarian

must work together to narrow search parameters and identity relevant resources. In UML, the process of checking out a book

can be represented as a use case, with symbols that represent actors and other essential entities. To create a use case diagram of

your own, just open up a document and start dragging shapes onto the page. If you're not sure where to start, the examples

below can help.

Library Management System Use Case Diagram Template

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 88

UNIT – IV

1. What is coupling? Tabulate and explain in detail about the types of coupling among objects

 or components.

• Coupling – measure of strength of association of objects.

• Helps to focus on design issues such as

– The degree of coupling is a function of

– How complicated the connection is

– Whether the connection refer to the object itself / some data structures within it.

– What is being sent / received?

Types of Coupling

• Interaction coupling

– The amount and complexity of messages between components.

– Has little interaction.

• Inheritance coupling

• Form of coupling between super and sub classes

Degree of coupling Name Description

1. Very High Content

Coupling

Connection involves direct reference to

attributes / methods of another objects

2. High Common

coupling

Two objects accessing common global

data space.

https://www.lucidchart.com/documents/demo/4f321578-853f-4482-85c6-78cf321446a6

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 89

3.Medium Control coupling Explicit control of the processing

objects

4. Low Stamp coupling Passing an aggregate data structure to

another objects.

5. Very low Data coupling Simple data items /aggregate structures.

- It is the measure of interconnection among module.

- It depends upon the interface complexity between module

(i.e)

 Entry point

 Reference point to the module

 What data pass across the module

No direct Coupling stamp coupling external coupling content coupling

LOW

COUPLING SPECTRUM

HIGH

Data coupling control coupling common coupling

 No Direct Coupling:

 In the example a, d are from different modules, so no direct coupling occurs.

 Data Coupling:

 Occurs when long strings of argument are passed between components.

 E.g., c is subordinate to a.

o Data are passed from a to c is data coupling.

 Stamp Coupling:

 Variation of data coupling occurs when parts of larger data structures are passed between components.

 When a portion of data structure passed via a module interface (b and a).

 Control Coupling:

 Occurs when one components passes control flags as argument to another.

 Module e pass control to f,g,h

 External Coupling:

 Occurs when a component communicate or collaborates with in infrastructure components.

 Eg) database

 Common Coupling:

 Occurswhen several components make use of a global variable.

 c,g,k are data item using the global area.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 90

No direct coupling

Global data area

 Content Coupling:

 Occurs when one component modifies internal data in another component

 Routine Call Coupling

 Occurs when one operator invokes another

 Type Use Coupling

 Occurs when one component uses a data type defined in another

 Inclusion or Import Coupling

 Occurs when one component imports a package or uses the content of another

 OO design has 2 types of coupling: Interaction coupling and Inheritance coupling

 Interaction coupling

 The amount & complexity of messages between components.

 Desirable to have a little interaction.

 Minimize the number of messages sent & received by an object

 Inheritance coupling

 Coupling between super-and subclasses

 A subclass is coupled to its super class in terms of attributes & methods

 High inheritance coupling is desirable

 Each specialization class should not inherit lots of unrelated & unneeded methods & attributes

3. Explain in detail about the designing user interface for bank ATM.

• Macro Process

Determine if the class interacts with a human actor

a

d b c e

f
g h i

j k

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 91

– The only class that interacts with a human actor is ATM Machine

• Identify view (interface) objects for the class

– Use cases interact directly with actors are:

• Bank transaction

• Checking transaction history

• Deposit checking

• Deposit savings

• Savings transaction history

• Withdraw checking

• Withdraw savings

• Valid/invalid pin

– Based on these use cases, we have identified 8 view objects

• Define the relationships among the view objects

– AccountTransactionUI (for bank transaction)

– CheckingTransactionHistoryUI

– SavingsTransactionHistoryUI

– BankClientAccessUI (for validating a PIN code)

– DepositCheckingUI

– DepositSavingsUI

– WithdrawCheckingUI

– WithdrawSavingsUI

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 92

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 93

• Iterate and refine

– Instead of 4 UI’s DepositCheckingUI, DepositSavingsUI, WithdrawCheckingUI,

WithdrawSavingsUI, have 2 UI’s

– CheckingAccountUI and SavingsAccountUI

– Finally, we need one more view class that provides main control or main UI

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 94

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 95

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 96

Identifying Events and Actions for BankClientAccessUI Interface Object

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 97

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 98

4. Describe in detail about designing interface objects / view layer objects .

 The creative process involves a curious and imaginative mind

 A broad background and fundamental knowledge of existing tools and methods

 A desire to complete and thorough job discovering solutions once a problem has been defined.

 To deal with uncertainty and ambiguity and to defer premature closure

 When designing the UI objects, a decision is taken as to how the users can interact with the system

 View layer classes / interface objects

 Objects that represent the set of operations in the business that users must perform to complete their

tasks.

 Any objects that have direct contact with the outside world are visible in interface objects whereas

business or access objects are more independent of their environment.

 Input - responding to user interaction

 The user interface must be designed to translate an action by the user, such as clicking on a button or

selecting from a menu, into an appropriate response.

 That response may be to open or close another interface or to send a message down into the business

layer to start some business process.

 The knowledge of which message to and to which business object.

 Output - displaying or printing business objects

 This layer must give the pictorial representation of the business objects for the user.

 Activities of view layer classes

 The macro level UI design process - identifying view layer objects

 This activity takes place during the analysis phase of system development.

 Identify classes that interact with human actors by analyzing the use cases developed in the analysis

phase.

 These use cases capture a complete, unambiguous and consistent picture of the interface requirements of

the system.

 Sequence and collaboration diagrams allow the view of actor - system interaction and extrapolate

interface classes that interact with human actors.

 Macro level UI design activities

 Designing the view layer objects by applying design axioms and corollaries

 Decide how to use and extend the components so that they support application - specific functions and

provide the most usable interface

 Prototyping the view layer interface

 Prepare a prototype of some of the basic aspects of the design

 Testing Usability and user satisfaction

 Measure user satisfaction and its usability, focusing primarily on functionality

 Adoption of usability in the later stages of teh life cycle will not produce sufficient improvement of

overall quality.

5. Describe the processes of creating the access layer classes.

 The access layer design process consists of the activities such as mirror business class package,

mirror super - sub relationships and normalize classes and relationships

 If a class interacts with a nonhuman actor, such as another system, database or the web, then the

class automatically becomes the access class.

 Process

 For every business class identified, mirror the business class package.

 For every business class that has been identified and created, create one access class in the access

layer package.

 For example, if there are three business classes (Class1, Class2 and Class3), create three access

layer classes (class1DB, class2DB and Class3DB)

 Define relationships

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 99

 The same rule as applies among business class objects also applies among access classes.

 Simplify classes and relationships

 Eliminate redundant or unnecessary classes or structures

 Combine simple access classes and simplify the super - sub classes

 Redundant classes

 If there is more than one class that provides similar services, e.g., translate request and translate

results, select one and eliminate the other

 Method classes

 Revisit the classes that consists only one or two methods to find if they can be eliminated or

combined with existing classes.

 If no such class can be found from the access layer package, select its associated class from the

business package and add the methods as private. Now, an access method is created.

 Iterate and refine

 The access layer class not only stores the attributes but also the methods

 This is done by using OODBMS or RDBMS

 For every business class identified, determine if the class has persistent data.

 an attribute can be either transient or persistent/ non transient

 An attribute is transient if the following condition exists

 Temporary storage for an expression evaluation or its value can be dynamically allocated.

 An attribute is persistent if the data exist between executions of a program or outlive the

program.

 If the method has any persistent attributes, go to the next step - mirror the business class package.

 Otherwise, the class needs no associated access layer class.

 Mirror the business class package

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 100

 For every business class identified and created, create one access class in the access layer

package.

 For example, if there are three business classes (Class1, Class2 and Class3), create three access

layer classes (class1DB, class2DB and Class3DB)

 Define relationships

 The same rule as applies among business class objects also applies among access classes.

 Simplify classes and relationships

 Eliminate redundant or unnecessary classes or structures

 Combine simple access classes and simplify the super - sub classes

 Redundant classes

 If there is more than one class that provides similar services, e.g., translate request and translate

results, select one and eliminate the other

 Method classes

 Revisit the classes that consists only one or two methods to find if they can be eliminated or

combined with existing classes.

 Iterate and refine

 The access class that has been defined must be made as a-part of its business class.

6. Describe in detail about Model View Controller architectural pattern with an example.(Dec 16,17)

• A pattern is a proven solution to a problem in a context.

• Each pattern is a three-part rule which expresses a relation between a certain context, a problem, and

a solution.

• Design patterns represent a solution to problems that arise when developing software within a particular

context.

 Categories are Design ,Architectural, Analysis ,Creational , Structural and Behavioral

 Model–view–controller (MVC) is a software architectural pattern for implementing user interfaces.

 It divides a given software application into three interconnected parts, so as to separate internal

representations of information from the ways that information is presented to or accepted from the user.

 MVC expresses the "core of the solution" to a problem while allowing it to be adapted for each system.

MVC Architecture

 The Model represents the structure of the data in the application, as well as application-specific

operations on those data.

 A View (of which there may be many) presents data in some form to a user, in the context of some

application function.

http://en.wikipedia.org/wiki/Architectural_pattern
http://en.wikipedia.org/wiki/User_interface

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 101

 A Controller translates user actions (mouse motions, keystrokes, words spoken, etc.) and user input into

application function calls on the model.

 It selects the appropriate View based on user preferences and Model state.

Components

A typical collaboration of the MVC components

 The central component of MVC, the model, captures the behavior of the application in terms of its

problem domain, independent of the user interface.

 The model directly manages the data, logic and rules of the application.

 A view can be any output representation of information, such as a chart or a diagram; multiple views of

the same information are possible, such as a bar chart for management and a tabular view for

accountants.

 The controller, accepts input and converts it to commands for the model or view.

 Interactions

 A controller can send commands to the model to update the model's state (e.g., editing a document).

 It can also send commands to its associated view to change the view's presentation of the model (e.g., by

scrolling through a document).

 A model notifies its associated views and controllers when there has been a change in its state.

 This notification allows the views to produce updated output, and the controllers to change the available

set of commands.

 In some cases an MVC implementation might instead be "passive," so that other components must poll

the model for updates rather than being notified.

 A view requests information from the model that it uses to generate an output representation to the user.
 Use in web applications

o Model–view–controller has been widely adopted as an architecture for World Wide Web

applications in major programming languages.

o Several commercial and noncommercial web application frameworks have been created that

enforce the pattern.

o These frameworks vary in their interpretations, mainly in the way that the MVC responsibilities

are divided between the client and server.

 Early web MVC frameworks took a thin client approach that placed almost the entire model, view and

controller logic on the server.

 In this approach, the client sends either hyperlink requests or form input to the controller and then

receives a complete and updated web page (or other document) from the view; the model exists entirely

on the server.

 As client technologies have matured, frameworks such as AngularJS, Ember.js, JavaScriptMVC and

Backbone have been created that allow the MVC components to execute partly on the client.

http://en.wikipedia.org/wiki/Problem_domain
http://en.wikipedia.org/wiki/Polling_%28computer_science%29
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Programming_languages
http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://en.wikipedia.org/wiki/Thin_client
http://en.wikipedia.org/wiki/Hyperlink
http://en.wikipedia.org/wiki/Form_%28web%29
http://en.wikipedia.org/wiki/AngularJS
http://en.wikipedia.org/wiki/Ember.js
http://en.wikipedia.org/wiki/JavaScriptMVC
http://en.wikipedia.org/wiki/Backbone.js
http://en.wikipedia.org/wiki/File:MVC-Process.svg

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 102

 Details of MVC Design Pattern

• Name (essence of the pattern)

– Model View Controller MVC

• Context (where does this problem occur)

– MVC is an architectural pattern that is used when developing interactive application such as a

shopping cart on the Internet.

• Problem (definition of the reoccurring difficulty)

– User interfaces change often, especially on the internet where look-and-feel is a competitive

issue. Also, the same information is presented in different ways. The core business logic and data

is stable.

• Solution (how do you solve the problem)

– Use the software engineering principle of “separation of concerns” to divide the application into

three areas:

• Model encapsulates the core data and functionality

• View encapsulates the presentation of the data there can be many views of the common

data

• Controller accepts input from the user and makes request from the model for the data to

produce a new view.

7. Appraise with an example the process of designing classes. (May 2017)

Refer previous answers

8. Write short notes on the following: i) Object-Relation mapping. ii) Object Interoperability with a

 suitable example.

 Object-Relation mapping

 A class has a set of attributes (properties / data members).

 Object classes describe behaviour with methods

 A tuple of a table can be correlated to an instance of a class contains the data for a single object.

 a stored procedure is a module of precompiled SQL code maintained within the database that

executes on the server to enforce rules the business has set about the data.

 The mappings essential to object and relational integration are between a table and a class,

between columns and attributes , between a row and an object and between a stored procedure

and a method.

 The method defines the behaviour of the object

 Mapping Capabilities

 They are two - way mappings - they map from the relational system to the object and from teh object to

the relational system

 Table - class mapping

 Table - multiple classes mapping

 Table - inherited classes mapping

 Tables - inherited classes mapping

 Table - class mapping

 It is a one-to-one mapping of a table to a class and the mapping of columns in a table to properties in a

class.

 A single table is mapped to a single class.

 All the columns may be mapped to properties.

 It is sufficient to map only those columns for which an object model is required by the applications.

 Each row in the table represents an object instance and each column represents an object attribute.

 This one-to-one mapping of the table - class approach provides the transition between a relational data

representation and an application object.

 It is simple but offers little flexibility

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 103

 Table - multiple classes mapping

 A single table maps to multiple non inheriting classes.

 Two or more distinct, non-inheriting classes have properties that are mapped to columns in a single

table.

 At run time, a mapped table row is accessed as an instance of one of the classes, based on a column

value in the table.

 The custID column provides the discriminant.

 If the value for custID is NULL, an employee instance is created at run time.

 Otherwise, a customer instance is created.

 Table - inherited classes mapping

 A single table maps to many classes that have a common super class.

 The mapping allows the user to specify the columns to be shared among the related classes.

 The super class may either be an abstract or instantiated

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 104

 The instances of salariedEmployee can be created for any row in the Person table that has a non null

value for the Salary column.

 If Salary is null, the row is represented by an hourlyEmployee instance.

 Tables - inherited classes mapping

 It allows the translation of is - a relationships that exist among tables in the relational schema into class

inheritance relationships in the object model.

 In a relational database, an is - a relationship is modeled by a primary key that acts as a foreign key to

another table.

 In the object model, is - a is for an inheritance relationships that expresses clearer definition.

 The departmentID of the Employee uses teh foreign key in column Employee-departmentID.

 Each employee instance has a direct reference of class Department(association) to teh department object

to which it belongs.

Object Interoperability

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 105

– Distributed objects computing(DOC) utilizes reusable s/w components that can roam anywhere

on network run on different platforms, communicate with legacy applications by means of object

wrappers, manage themselves & resources they control.

– It promises the most flexible client-server systems

– They are reusable software components that can be distributed and accessed by users across the

network.

– Applications no longer consist of clients and servers but users, objects and methods

– The user no longer needs to know which server process performs a given function.

– All information about the function is hidden inside the encapsulated object.

– A message requesting an operation is sent to the object and the appropriate method is invoked.

– It can be used to integrate mission - critical applications and data residing on systems that are

geographically remote.

– OMG specifies the architecture for an open software bus on which object components written by

different vendors can operate across networks and operating systems.

– The OMG and the object bus will become the universal client-server middleware.

– The distributed component object model is an Internet and component strategy where ActiveX

(OLE) plays the role of DCOM object.

– DOC standards : Object Management Group’s (OMG) CORBA, Microsoft’s Activex/DCOM

(Both provides object interoperability), OpenDoc.

• Common Object request Broker Architecture (CORBA)

– A standard proposed to integrate distributed, heterogeneous business applications & data

– CORBA interface definition language (IDL) allows developers to specify language-neutral,

object-oriented interfaces for application & system components

– CORBA Object Request Brokers (ORB) implement a communication channel through which

applications can access object interfaces & request data and services

• The CORBA common object environment(COE) provides system level services such as life cycle

management for objects accessed through CORBA, event notification between objects and transaction

and concurrency control

• Microsoft’s ActiveX/DCOM

– COM & DCOM are Microsoft’s alternative to OMG’s CORBA,ActiveX – formerly known as

OLE

9. Explain the rules of OODBMS and compare O-O Databases with traditional databases.

o An object-oriented database management system (OODBMS) is a database management
system (DBMS) that supports the modeling and creation of data as objects.

 It is a combination of object oriented programming and database technology that provide an integrated

application development system

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 106

This includes some kind of support for classes of objects and the inheritance of class properties and methods by

subclasses and their objects.

The defined operations apply universally and are not dependent on the particular database application running at

the moment.

The data types can be extended to support complex data such as multimedia by defining new object classes that

have operations to support the new kinds of information.

Characteristics of OODBMS

 It includes Object oriented language properties and database requirements

Rules for object oriented system

The system must support complex objects.

 It must provide simple atomic types of objects(integers, characters, etc) from which complex objects can

be built by applying constructors to atomic objects or other complex objects or both

Object identity must be supported

 A data object must have an identity and existence independent of its values

 Objects must be encapsulated

 An object must encapsulate both a program and its data

 Encapsulation embodies the separation of interface and implementation and the need for modularity

The system must support inheritance

 Classes and types can participate in a class hierarchy

 It factors out shared code and interfaces

The system must support types (as defined in C++) and classes (defined in SmallTalk)

The system must avoid premature binding / late binding/ dynamic binding

 System must resolve conflicts in operation names at run time

The system must be computationally complete

 Any computable function should be expressible in the DML of the system.

The system must be extensible

http://whatis.techtarget.com/definition/class
http://searchcio-midmarket.techtarget.com/definition/inheritance
http://searchcio-midmarket.techtarget.com/definition/method

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 107

 The user of the system should be able to create new types that have equal status to teh system's

predefined types.

 It must be persistent, able to remember on object state

 It must be able to manage very large databases

 It must accept concurrent users

 It must be able to recover from hardware and software failures

 Data query must be simple

OODBMS Traditional DBMS

Objects are an active component Records play a passive role

Provide inheritance No inheritance

Maintain data integrity regardless

of system, network or

media failure

 It also does the same

Represent relationships explicitly It is not so

Ability to interact with other

objects and with itself.

It is the same

Allow representation and storage

of data in the form of objects

The information is

Improved Access performance

over relational value-based

relationships

Each object has its own identity

The object identity is

independent of the state of

the object

Object identity allows objects to

be related and shared within

a distributed computing

network

10. Explain in detail about the macro and micro level process of designing view layer classes.(May16)

Macro process consists of 2 steps

– 1. for every class identified, determine if the class interacts with a human actor. If so perform the

following; otherwise move to the next class

• 1.1 Identify view (interface) objects for the class

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 108

• 1.2 define the relationships among the view objects

– 2. Iterate and refine

Micro-level process

– 1. For every interface object identified in the macro design process, apply micro-level UI design

rules and corollaries to develop the UI.

– 2. Iterate and refine

11. Explain the design axioms and corollaries derived as a consequence of the axioms. (Dec 2016)
Axioms

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 109

 Fundamental truth

 Always valid for which there is no counter example / exception.

 Can’t be proven / derived.

 Theorem

 Proposition that may not be self evident.

 Can be proved from axioms

 Equivalent to law/principle

 Corollary

o Proposition that follows from an axiom / another proposition that has been proven.

o Valid / invalid

o Similar to theorem.

Axiom 1 Maintain independence among the components

Axiom 2 Minimize the information content of the design.

Corollaries - Design Rules

• Useful in making specific design decisions.

• Applied to actual situations more easily than axioms.

• Derived from two basic axioms.

• Corollary 1 - Uncoupled design with less information content

• Single purpose.

• Large number of simple classes allow reusability.

• Strong mapping between analysis objects and design objects.

• Standardization.

• Design with inheritance.

• Corollary 2 – single purpose

• Every class should be Clearly defined classes

• The documentation of a class should be able to easily explain its purpose .

 It must be simple, more precise

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 110

• Each method is to provide only one service.

• Corollary 3 – Large number of simpler classes reusability

• Smaller the classes, the better you reuse.

• Large and complex classes are too sophisticated to be reused.

• OOD puts encapsulation, modularization and polymorphism for reuse.

• E.g., description of software IC library framework between OOD and building network using IC

chips.

• Rarely practiced effectively (C & Y)

• Organizations service which have achieved high levels of reusability.

• Institutionalized approach software created intentionally to be reused.

• Corollary 4 – strong mapping
• OOA & OOD based on same models.

• A strong mappings links classes during design phase.

• Corollary 5 – Standardization

• It requires good understanding of the classes in the OOPs environment.

• Small talk, Java, C++ , PowerBuilder has several built-in class libraries.

• Class libraries must easily be searched, based on users' criteria

• Design patterns capture the design knowledge, document it and store it in a repository that can be

shared and reused in different applications.

• Corollary 6 – Designing with inheritance

• Inheritance minimizes the amount of program instructions.

• Determine the ancestor, attributes, messages of a class.

• Construct the methods and protocols of a class.

• Single inheritance

 Redesign the application by using the inheritance mechanisms supported by the system's target language.

 If the language supports single inheritance exclusively, select a formal super class.

 Identify other related sub classes and relevant methods.

 Advantages of single inheritance

 It avoids ambiguity in the selection of methods by a class.

 It concentrates only on the specific behaviour of an object.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 111

 Multiple Inheritance in a single inheritance system

 LISP and C++ support multiple inheritance where objects can inherit behaviour from unrelated areas of

the class tree.

 Disadvantages

 How to determine which behaviour to get from which class when several ancestors define the same

method.

 It is more difficult to understand programs written in a multiple inheritance system

 To achieve the benefits of multiple inheritance in a language with single inheritance is to inherit from the

most appropriate class and add an object of another class as an attribute or aggregation.



 Avoiding inheriting inappropriate behaviour

 Before a class inherits, the following questions can be considered

 Is the sub class fundamentally similar to its super class? (high inheritance coupling)

 Is it an entirely new information that provide some expertise from its super class (low inheritance

coupling)

 If low inheritance coupling is preferred, add an attribute that incorporates the proposed super class's

behaviour rather than an inheritance from the super class.

12. Write short notes on the following i)Explain about object relational systems (May 2015)

 ii) Discuss the various design corollaries (May 2015/2016)

object relational systems

design corollaries

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 112

Corollaries - Design Rules

• Useful in making specific design decisions.

• Applied to actual situations more easily than axioms.

• Derived from two basic axioms.

• Corollary 1 - Uncoupled design with less information content

• Single purpose.

• Large number of simple classes allow reusability.

• Strong mapping between analysis objects and design objects.

• Standardization.

• Design with inheritance.

• Corollary 2 – single purpose

• Every class should be Clearly defined classes

• The documentation of a class should be able to easily explain its purpose .

 It must be simple, more precise

• Each method is to provide only one service.

• Corollary 3 – Large number of simpler classes reusability

• Smaller the classes, the better you reuse.

• Large and complex classes are too sophisticated to be reused.

• OOD puts encapsulation, modularization and polymorphism for reuse.

• E.g., description of software IC library framework between OOD and building network using IC

chips.

• Rarely practiced effectively (C & Y)

• Organizations service which have achieved high levels of reusability.

• Institutionalized approach software created intentionally to be reused.

• Corollary 4 – strong mapping
• OOA & OOD based on same models.

• A strong mappings links classes during design phase.

• Corollary 5 – Standardization
• It requires good understanding of the classes in the OOPs environment.

• Small talk, Java, C++ , PowerBuilder has several built-in class libraries.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 113

• Class libraries must easily be searched, based on users' criteria

• Design patterns capture the design knowledge, document it and store it in a repository that can be

shared and reused in different applications.

• Corollary 6 – Designing with inheritance
• Inheritance minimizes the amount of program instructions.

• Determine the ancestor, attributes, messages of a class.

• Construct the methods and protocols of a class.

• Single inheritance

 Redesign the application by using the inheritance mechanisms supported by the system's target language.

 If the language supports single inheritance exclusively, select a formal super class.

 Identify other related sub classes and relevant methods.

 Advantages of single inheritance

 It avoids ambiguity in the selection of methods by a class.

 It concentrates only on the specific behaviour of an object.

 Multiple Inheritance in a single inheritance system

 LISP and C++ support multiple inheritance where objects can inherit behaviour from unrelated areas of

the class tree.

 Disadvantages

 How to determine which behaviour to get from which class when several ancestors define the same

method.

 It is more difficult to understand programs written in a multiple inheritance system

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 114

 To achieve the benefits of multiple inheritance in a language with single inheritance is to inherit from the

most appropriate class and add an object of another class as an attribute or aggregation.



 Avoiding inheriting inappropriate behaviour

 Before a class inherits, the following questions can be considered

 Is the sub class fundamentally similar to its super class? (high inheritance coupling)

 Is it an entirely new information that provide some expertise from its super class (low inheritance

 coupling)

 If low inheritance coupling is preferred, add an attribute that incorporates the proposed superclass's

behaviour rather than an inheritance from the super class.

UNIT – V

1. i)Explain in detail about the quality assurance testing.

iii) Sketch the various guidelines for developing quality assurance test cases and test plans.

Quality Measures

Verification

- "Am I building the product right?"

Validation

- "Am I building the right product?"

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 115

Quality Assurance testing can be divided into 2 major categories.

i) Error Based Testing techniques search a given class’s methods for particular clues of interest, then describe

how these clues should be tested.

Eg: compute payroll method of employee class need to be tested.

 Employee.computepayroll(hours)

To test this method we must try different values for hours (say 40,0,-10,100) to see of the program can handle

them. (also known as testing the Boundary condition). This method should be able to handle any value; if not,

error must be recorded and reported.

ii) Scenario based Testing (usage based Testing) concentrates on what the user does, not what the product does.

This means capturing use cases and the tasks users perform, then performing them and their variants as tests. It

can also identify interaction bugs.

 they often are more complex and realistic than error-based tests.

 they tend to exercise multiple subsystems in a single test.

Testing Objectives

o Testing is a process of executing a program with the intent of finding an error.

o A good test case is one that has a high probability of finding an as-yet undiscovered error.

o A successful test is one that uncovers an as-yet-undiscovered error.

Testing Principles

1. All tests should be traceable to customer requirements.

2. Tests should be planned long before testing begins.

3. The pareto principle applies to software testing.

4. Test should begin “ in the small” and progress toward testing “in the large”

5. Exhaustive testing is not possible.

White-box testing

 White box testing is also called structural testing or glass box testing.

 The internal program logic is checked

 logical paths thro the s/w are tested

 status of program is examined

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 116

 all independent paths within a module is tested

 It tests the code

 It is applied in the early stage of testing process. It uses the control structure of the procedural design to derive

test cases.

Sample Application

In-circuit testing is a good example of a white-box system testing where the tester is looking at the interconnections

between different components of the application and verifying the proper functioning of each internal connection.

We can also consider the example of an auto-mechanic who takes care of the inner workings of a vehicle to ensure

that all the components are working correctly to ensure the proper functioning

of the vehicle.

Basic Path Testing

Cyclomatic complexity is a software metric that provides a quantitative measure of the logical complexity

of a program. Cyclomatic complexity has a foundation in graph theory and is computed in one of three

ways:

1. The number of regions corresponds to the cyclomatic complexity.

2. Cyclomatic complexity, V(G), for a flow graph, G, is defined as

V(G)=E-N+2 where E is the number of flow graph edges, and N is the number of flow graph nodes.

3. Cyclomatic complexity, V(G), for a flow graph, G is also defined as

 V(G)=P=1

 where P is the number of predicate nodes contained in the flow graph G.

Black box testing/behavioral testing

 It exercises all the functional requirements of the software.

 It does not know the internal working of the product.

 It specifies the functions of the software.

 It demonstrates that software functions are operational, ie whether the i/p is accepted and output is correctly

produced, and that the integrity of external information (database) is maintained.

 It does not check the logical errors present in the application.

Sample Application

Search engine is a very good example of a black box system. We enter the text that we want to search, by

pressing “search” we get the results. Here we are not aware of the actual process that has been implemented

to get the results. We simply provide the input and get the results

System testing techniques

Recovery Testing

Security Testing

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 117

Stress Testing

Performance Testing

Regression Testing

Unit Testing

 focuses verification effort on the smallest unit of s/w design.

 control paths are tested to uncover errors within the boundary of the module.

 focuses on the internal processing logic and data structures within the boundaries of the

component.

 can be conducted in parallel for multiple components.

Integration Testing

Integration testing is a systematic technique for constructing the s/w architecture while at the same time

“ conducting tests to uncover errors associated with interfacing”. The objective is to take unit tested

components and build a program structure that has been dictated by design.’

 There are two types of integration

1. non incremented integration

2. incremental integration

Software reliability

 Software reliability is the probability of failure-free operation of a computer program in a specified

environment for a specified time.

A simple measure of reliability is mean-time –between –failures.(MTBF)

MTBF = MTTF + MTTR

Availability is the probability that a program is operating according to requirement at a given point in time & it

is defined as

Availability = [MTTF / (MTTF + MTTR)]*100%

Defect removal efficiency.

 To assess the real time quality of software, engineers use certain technical measures. Defect removal efficiency

(DRE) is one such quality metric that provides benefit at the project level. It is actually a measure of filtering ability of

quality assurance and control activities as they are applied throughout all process framework activities.

 DRE = E / E+D

 ii) Sketch the various guidelines for developing quality assurance test cases and test plans

 SAMPLE BUG REPORT:

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 118

Bug Name: Application crash on clicking the SAVE button while creating a new user.

Bug ID: (It will be automatically created by the BUG Tracking tool once you save this bug)

Area Path: USERS menu > New Users

Build Number: Version Number 5.0.1

Severity: HIGH (High/Medium/Low) or 1

Priority: HIGH (High/Medium/Low) or 1

Assigned to: Developer-X

Reported By: Your Name

Reported On: Date

Reason: Defect

Status: New/Open/Active (Depends on the Tool you are using)

Environment: Windows 2003/SQL Server 2005

Description:

Application crash on clicking the SAVE button while creating a new

user, hence unable to create a new user in the application.

Steps To Reproduce:

1) Logon into the application

2) Navigate to the Users Menu > New User

3) Filled all the user information fields

4) Clicked on ‘Save’ button

5) Seen an error page “ORA1090 Exception: Insert values Error…”

6) See the attached logs for more information (Attach more logs related to bug..IF any)

7) And also see the attached screenshot of the error page.

Expected result: On clicking SAVE button, should be prompted to a success message “New User has been

created successfully”.

2. What are the steps involved in Cryptanalysis explain with example.(May 2016)

Cryptanalysis refers to the study of ciphers, cipher text, or cryptosystems (that is, to secret code systems)

with a view to finding weaknesses in them that will permit retrieval of the plaintext from the ciphertext,

without necessarily knowing the key or the algorithm. This is known as breaking the cipher, ciphertext, or

cryptosystem.

1) Known-plaintext analysis: With this procedure, the cryptanalyst has knowledge of a portion of the

plaintext from the ciphertext. Using this information, the cryptanalyst attempts to deduce the key used to

produce the ciphertext.

2) Chosen-plaintext analysis (also known as differential cryptanalysis): The cryptanalyst is able to have any

plaintext encrypted with a key and obtain the resulting ciphertext, but the key itself cannot be analyzed. The

cryptanalyst attempts to deduce the key by comparing the entire ciphertext with the original plaintext.

The Rivest-Shamir-Adlemanencryption technique has been shown to be somewhat vulnerable to this type of

analysis.

3) Ciphertext-only analysis: The cryptanalyst has no knowledge of the plaintext and must work only from

the ciphertext. This requires accurate guesswork as to how a message could be worded. It helps to have

some knowledge of the literary style of the ciphertext writer and/or the general subject matter.

4) Man-in-the-middle attack: This differs from the above in that it involves tricking individuals into

surrendering their keys. The cryptanalyst/attacker places him or herself in the communication channel

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 119

between two parties who wish to exchange their keys for secure communication (via asymmetric or public

key infrastructure cryptography). The cryptanalyst/attacker then performs a key exchange with each party,

with the original parties believing they are exchanging keys with each other. The two parties then end up

using keys that are known to the cryptanalyst/attacker. This type of attack can be defeated by the use of

a hash function.

5) Timing/differential power analysis: This is a new technique made public in June 1998, particularly useful

against the smart card, that measures differences in electrical consumption over a period of time when a

microchip performs a function to secure information. This technique can be used to gain information about

key computations used in the encryption algorithm and other functions pertaining to security. The technique

can be rendered less effective by introducing random noise into the computations, or altering the sequence

of the executables to make it harder to monitor the power fluctuations. This type of analysis was first

developed by Paul Kocher of Cryptography Research, though Bull Systems claims it knew about this type

of attack over four years before.

In addition to the above, other techniques are available, such as convincing individuals to reveal

passwords/keys, developing Trojan horse programs that steal a victim's secret key from their computer and

send it back to the cryptanalyst, or tricking a victim into using a weakened cryptosystem.

3. What is a test plan? Develop a test plan for Internet Banking Application. What do you mean by usability and

user interface testing? List the guidelines for developing usability testing.

 A test plan is developed to detect and identify potential problems before delivering the software to its

users. The test plan need not be very large; in fact, devoting too much time to the plan can be

counterproductive. Test plan must include the type of testing to be done.

 Test plan for Internet Banking Application

1) Test Plan id: IBS-ST-TP_001

2) Introduction

It is system test plan for Internet banking System, internet web application, provides access to

Account holders and guest users from any ware in the world. It has two interfaces one is Admin

interface another is user interface. Admin can be accessed by Bank Authorized users, user interface

can be accessed by bank account holders and guest users.

The purpose of the system(Application) is to provide bank information and services online,

Bank account get banking services from any ware, without visiting the bank branches.

3) Test Items:

 Admin Interface

 Master Data

 User Management

 Reports

 User Interface

 Information

 Personal Banking

 Corporate banking

 Business Etc.,

4) References

 Requirements

 Project Plan

 Test Strategy

 Use cases(if available)

 High Level Design doc

 Low Level design docs

 Process guide line doc

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 120

 Prototypes

5) Features to be tested:

a) Admin Interface:

i) Master Data

 1) Add new branch, edit branch/ delete branch

 2) Add new ATM

 3) Add new loan type

 4) Add new account type

 5) Add new deposit type

 ii) User Management

1) Create new user

2) Edit user

3) Delete user

 iii) Reports

1) Branch wise report

2) User wise report

3) Day, month yearly reports

4) Service wise report(only loans, only new account, fixed deposits)

b) User Interface:

i)Information

1) Branch locators

2) ATM locators

3) Loans information

4) Bank history

5) Bank financial details

6) Fixed deposits information

7) Calculators

ii) Personal Banking

1) Login

2) Balance enquiry

3) Bill payment(utilities, Subscriptions)

4) Fund transfer(transfer to same bank, others bank)

5) Statement generation (mini stmt, detailed report)

iii) Corporate Banking

1) Add user, Edit user, Delete user

2) Balance enquiry

3) Money transfer

4) Payroll

5) Reports

6) Features not to be tested:

6) NA

7) Entry Criteria

a) Test Design

Team formation, responsibilities, Schedule, Requirements, Test Case Template

Training on domain, on Automation tools

b) Test Execution

 Readiness of test lab

 Readiness of AUT

 Requirements

 Test Case docs.

 Test Data

 Defect Report Template

8) Exit Criteria

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 121

 All possible test cases executed.

 Maximum defects fixed, final Regression performed successfully

 Confidence on test process

 Time Limitations

 Budget Limitations

9) Suspension Criteria

 Show-stopper bug found

 Supplier issues

 Vast change in requirements

 If resolving defects are more

10) Roles and responsibilities

S.No. Name Role Responsibilities Remarks

1 Kareemulla SK Test Lead Test Planning, guidance,

Monitoring and Test

control

2 Venkat Rao. P Sr.Tester Test Data

Documentation,

Generating Test

Scenarios.

3 Swapna. Dk Tester Test Case

Documentation, test

execution. Defect

reporting and tracking

for personal banking

module.

4 Srinivas V Tester Test Case

Documentation, Test

execution, defect

reporting and tracking

for Personal banking

module.

5 Suneetha B Tester Test Case

Documentation, Test

execution , defect

reporting and tracking

for corporate banking

module

11) Schedule:

S.No. Task Days Duration Remarks

1 Understanding & Analyzing

Requirements

5 2nd july to 6th July

2 Review meeting 01 9th July

3 Generating Test Scenarios 10 11th July to 26th July

4 Reviews 02 25th July to 12th Aug

5 Test Case Documentation 40 20th July to 12th Aug

6 Reviews 04 14th Aug to 18th Aug

7 Test Data Collection 06 20th Aug to 26th Aug

8 Test data collection 06 20th Aug to 26th Aug

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 122

9 Reviews 01 28th Aug

10 Verifying Test Environment Setup 01 20th AUG

11 Create Test Batches 02 30th ,31st Aug

12 Sanity Testing 01 3rd Sep

13 Comprehensive Testing 25 4th SEP to 2nd OCT

14 Sanity Testing 01 3rd Oct

15 Selecting Test Cases 02 4th and 5th OCT

16 Regression Testing 05 8th OCT to 12th Oct

17 Sanity Testing 01 15th Oct

18 Selecting Test cases 01 16th Oct

19 Regression Testing Cycle 2 04 17th Oct to 22nd Oct

20 …

21 …

22 Final Regression 08 19th Nov to 28th Nov

23 Evaluating exit criteria 01 OR

02

29TH, 30TH Nov

24 Collcting all artifacts 02 3rd, 4th Dec

25 Test Summary Report 01 5th Dec

Note: Regression testing depends on application and strength of development team.

12) Training

 Training program on banking domain

 Test Automation Training using QTP tool

13) Risks & Mitigations

 Team member’s issues

 Vendor issues

 Time

 Budget

 14) Test Environment/ Lab

Application type, Web Application, Internet and public

Server side:

 Windows 2003 server

 Unix server

Ms Exchange server

a) Web server b) EDP c) Data storage

 Bugzilla Tool

 VSS

 MS office

 QTP tool

 Browser IE 7.0

Client side

 Windows XP +SP2

 VSS

 MS office

 QTP

15) Test Deliverables

 Test Plan

 Review reports

 RTM

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 123

 Test Scenario docs

 Test data

 Opened, closed defect reports

 Test summary report

16) Approvals

S.No. Tasks Author/Role Date & Signature

1 Test Plan Documentation Kareemulla Sk(test Lead

2 Review Hari Prasad(QA Analist)

3 Approval Vinod Rao(project

Manager)

17) Glossary

 AUT-Application Under test

 PIN-Project Initiation Note

 SRS- Software Requirements Specification

4. What do you mean by usability and user interface testing? List the guidelines for developing usability testing.

System Usability & Measuring User Satisfaction

• Verification - "Am I building the product right?"

• Validation - "Am I building the right product?"
• Two main issues in software quality are validation or user satisfaction and verification or quality

assurance.
• The process of designing view layer classes consists of the following steps:

1. In the macro-level user interface (UI) design process, identify view layer objects.

2. In the micro-level UI, apply design rules and GUI guidelines.

3. Test usability and user satisfaction.

4. Refine and iterate the design.

Usability and User Satisfaction Testing

Two issues will be discussed:

1. Usability Testing and how to develop a plan for usability testing.
2. User Satisfaction Test and guidelines for developing a plan for user satisfaction testing.
• The International Organization for Standardization (ISO) defines usability as the effectiveness,

efficiency, and satisfaction with which a

specified set of users can achieve a specified set of tasks in particular environments.

Defining tasks. What are the tasks?

Defining users. Who are the users?

A means for measuring effectiveness, efficiency, and satisfaction.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 124

The phrase two sides of the same coin is helpful for describing the relationship between the

usability and functionality of a system.

Usability testing measures the ease of use as well as the degree of comfort and satisfaction
users have with the software.

Usability testing must begin with defining the target audience and test goals.

Run a pilot test to work out the bugs of the tasks to be tested.

Make certain the task scenarios, prototype, and test equipment work smoothly.

 Usability testing should begin in the early stages of product development, when developing use cases.

 The findings from usability testing can be incorporated into the usability test plan and test cases.

 Usability testing must be a key part of the UI design process

Guidelines For Developing Usability Testing

“Focus groups" are helpful for generating initial ideas or trying out new ideas.

It requires a moderator who directs the discussion about aspects of a task or design

 Apply usability testing early and often.

 Include all of a software’s components in the test.

 The testing doesn’t need to be very expensive, a tape recorder, stopwatch, notepad and an office can

produce excellent results

 Tests need not involve many subjects.

 More typically, quick, iterative tests with a small, well-targeted sample of 6 to 10 participants can

identify 80–90 percent of most design problems.

 Focus on tasks, not features.

 Remember that your customers will use features within the context of particular tasks

Recording the Usability Test

 Do not interrupt participants during a test.

 If they need help, begin with general hints before moving to specific advice.

 Keep in mind that less intervention usually yields better results.

 Ask subjects to think aloud, so you can hear what assumptions and inferences they are making.

 Record how long they take to perform a task as well as any problems they encounter.

 Record the test results using a portable tape recorder, or better, a video camera.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 125

 You may also want to follow up the session with the user satisfaction test

5. Explain in detail about automated testing tools. Write the advantages.(May 2016, Dec 2016)

The use of software testing tools can dramatically simplify testing, increase the defect find rate and

ultimately achieve a higher release quality. A testing tool is needed to ensure that your system or your

application is in a good condition. Testing tools are often helpful for those who wish to automate tests

on he applications that they are developing.

A testing tool can also be used by the users. There are a wide variety of software test tools that address

many aspects of the testing process; they can be applied to different types of software, different

programming languages, and address different types of testing. The scope and quality of such tools vary

widely and provide varying degrees of assistance.

Types of Software Testing Tools can be categorized by the testing activity or the process they are

utilized.

1. There are drive testing tools for your hard drives so that you will know how fast it can write, read and

access the data.

2. There are also tools for testing the CD or DVD drives

3. The optical drive tests are very useful in knowing how quick the CD or DVD can burn files or folders,

4. There are also tools that will enable you to see the health of your system as a whole. This is because it

can give you the current health of your hard drive as well as outcomes about the speed tests on

broadband, DSL, VoIP and many more.

5. There are web service testing tools that can help you in checking the efficiency of your site when

developing a website to verify that your site works perfectly whenever a visitor logs in and out.

6. Integration testing is generally managed by the data architect or software designer in an integration

test environment which “mirrors” the intended production environment.

7. Functional testing is done to ensure that each separate function of the software works independently

as well as a group.

8. Performance testing is done to ensure your software performs in the manner in which it was designed

to perform.

9.Unit testing required for testing of the individual software units

to make sure they continue to operate and function as a whole and individually.

10. Compatibility and usability should also be tested before release of the software. It is important that

the software be tested fully for loadability and traffic flow.

By employing these tools means the more improvements you will see with productivity increases.

Create Test Cases

Identifying workload profiles and key scenarios generally does not provide all of the information

necessary to implement and execute test cases. Additional inputs for completely designing a stress test

include performance objectives, workload characteristics, test data, test environments, and identified

metrics. Each test design should mention the expected results and/or the key data of interest to be

collected, in such a way that each test case can be marked as a “pass,” “fail,” or “inconclusive” after

execution.

The following is an example of a test case based on the order-placement scenario.

Test 1 – Place Order Scenario

Workload: 1,000 simultaneous users.

Think time: Use a random think time between 1 and 10 seconds in the test script after each operation.

Test Duration: Run the test for two days.

Expected results:

Application hosting process should not recycle because of deadlock or memory consumption.

Throughput should not fall below 35 requests per second.

Response time should not be greater than 7 seconds for 95 percent of total transactions completed.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 126

“Server busy” errors should not be more than 10 percent of the total response because of contention-

related issues.

Order transactions should not fail during test execution. Database entries should match the

“Transactions succeeded” count.

5. Propose an object oriented design for an inventory control system. State the functional requirements

 you are considering.(Dec 2016)

 i)Explain in detail about user satisfaction test

 ii) Explain about the test cases and User satisfaction test for Bank ATM System.

 User Satisfaction Test

 User satisfaction test is the process of quantifying the usability test with some measurable attributes of

the test, such as functionality, cost, or ease of use.

 The best measure of user satisfaction is the product itself, since you can observe how users are using it,

or avoiding it.

 As a communication vehicle between designers, as well as among users and designers.

 To detect and evaluate changes during the design process.

 To provide us with a periodic indication of divergence of opinion about the current design

 To enable pinpointing specific areas of dissatisfaction for remedy.

 To provide a clear understanding of just how the completed design is to be evaluated.

 The test is inexpensive, easy to use and it is educational to those who administer it and those who fill it

out.

 Even if the results may never be summarized, or filled out, the process of creating the test itself will

provide us with useful information

Guidelines for Developing a User Satisfaction Test

 The format of every user satisfaction test is basically the same, but its content is different for each

project.

 Use cases and users can provide us with the attributes that should be included in the test.

 Ask the users to select a limited number (5 to 10) of attributes by which the final product can be

evaluated.

 Once these attributes have been identified, they can play a crucial role in the evaluation of the final

product.

Custom Form for User Satisfaction Test

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 127

Gause and Weinberg raise the following important point in conducting user satisfaction test:

When the design of the test has been drafted, show it to the clients and ask, 'If you fill this out monthly (or

whatever interval), will it enable you to express what you like and don't like?' if they answer negatively then

find out what attributes would enable them to express themselves and revise the test.

A user satisfaction test for a customer tracking system.

A shift in the user satisfaction rating indicates that something is happening.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 128

Plotting the high and low responses indicates where to go for maximum information

User Satisfaction Cycle

1. Create a user satisfaction test with the users.

2. Conduct the test regularly and frequently.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 129

3. Read comments very carefully, especially if they express strong feeling.

4. Use the information.

 ii) Explain about the test cases and User satisfaction test for Bank ATM System.(Dec 2016)

 Test cases for ATM Machine

1. Machine is accepting ATM card

2. Machine is rejecting expired card

3. Successful entry of PIN number

4. Unsuccessful operation due to enter wrong PIN number 3 times

5. Successful selection of language

6. Successful selection of account type

7. Unsuccessful operation due to invalid account type

8. Successful selection of amount to be withdraw

9. Successful withdrawal.

10. Expected message due to amount is greater than day limit

11. Unsuccessful withdraw operation due to lack of money in ATM

12. Expected message due to amount to withdraw is greater than possible balance.

13. Unsuccessful withdraw operation due to click cancel after insert card

User Satisfaction test for Bank ATM

Steps:

1. Develop test objectives.

2. Develop test cases.

3. Analyze the tests.

1. Develop test objectives –

1. Test objectives are based on the requirements, use cases, or convert or desired system usage.

2. “Ease of use” is the most important requirement.

Objectives to test usability of Via. Net bank ATM kiosk and it’s Via:

95% of users should be able to find out how to withdraw money from the ATM machine without error

(or) any format training.

 90% of consumers should be able to operate the ATM within 90 seconds.

2. Develop Test Cases:

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 130

Test cases for usability testing are slightly different from test cases for quality assurance. We are not testing the

input and expected output. But how users interact in value system. The usability test scenarios are based on the

following use cases.

1. Deposit chewing

2. Withdraw chewing

3. Deposit chewing

4. Withdraw savings

5. Saving transaction himself

6. Checking transaction himself

Start by explaining the testing process and equipment to the participants to ease the pressure. As the participants

work, second the time they take to perform a task as well as any problems they encounter. Once the test subjects

complete their tasks, conduct a user satisfaction test to measure their level of satisfaction with the kiosk. The

users use cases and test object should provide the attributes to be included in the test. The following attributes

can play a certain role because ease of use is the main issue of user interface.

1. Easy to operate

2. Burrows are easily located.

3. It is efficient

4. It is visually pleasing

5. Provides easy recovery from error.

6. Analyze the Tests:

The final step is to analyze the tasks and document the test results. We also need to analyze the results of user

satisfaction tasks. The user satisfaction test can be used as tool for finding out attributes are important or

unimportant.

An Example:

In withdrawal checking, in adding to entering the amount for withdrawal, we are able to select from the list of

predefined values say $20, $40, etc.

6. Write short notes on the following:

 i) Impact of Object Orientation on Testing

 ii) Impact of Inheritance in Testing

The impact of an object orientation on testing is summarized by the following .

 some types of error could become less plausible (not worth testing for).

 some types of error could become more plausible (worth testing for now).

 Some new types of errors might appear.

The testing approach is essentially the same in both the environments

(i.e)

 Object oriented environment and

 Non object oriented environment

 The problem of testing messages in an object orientation is the same as testing code that takes a function

as a parameter and then invokes it.

MARICK argues that the process of testing variable uses in OOD essentially does not change, but you have

to look in more places to decide what needs testing.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 131

 Has the plausibility of faults changed?

 Are some types of fault now more plausible or less plausible?

 Since object oriented methods generally are smaller, these are easier to test.

 At the same time there are more opportunities for integration faults. They become more likely, more

plausible.

 Impact of inheritance in testing

 Reusability of test

 ii) Impact of Inheritance in Testing

 Suppose you have the situation: base class contains method inherited() and redefined() and the

derived class redefines the redefined() method.

 The derived::redefined has to be tested afresh since it is a new code.

 Does derived::inherited() have to be retested? If it uses redefined() and the redefined() has changed,

the derived::inherited() may mishandle the new behavior. So, it needs new tests even though the

derived::inherited() itself has not changed.

 If the base::inherited() has been changed, the derived::inherited() may not have to be completely tested.

Whether it does depends on the base methods; otherwise it must be tested again.

7. i)Describe in detail about the different types of testing strategies.

 ii) Write and explain the guidelines for developing quality assurance test cases in inventory control

 systems.(April/May2015)

White-box testing

 White box testing is also called structural testing or glass box testing.

 The internal program logic is checked

 logical paths thro the s/w are tested

 status of program is examined

 all independent paths within a module is tested

 It tests the code

 It is applied in the early stage of testing process. It uses the control structure of the procedural design to derive

test cases.

Sample Application

In-circuit testing is a good example of a white-box system testing where the tester is looking at the interconnections

between different components of the application and verifying the proper functioning of each internal connection.

We can also consider the example of an auto-mechanic who takes care of the inner workings of a vehicle to ensure

that all the components are working correctly to ensure the proper functioning

of the vehicle.

Basic Path Testing

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 132

Cyclomatic complexity is a software metric that provides a quantitative measure of the logical complexity

of a program. Cyclomatic complexity has a foundation in graph theory and is computed in one of three

ways:

4. The number of regions corresponds to the cyclomatic complexity.

5. Cyclomatic complexity, V(G), for a flow graph, G, is defined as

V(G)=E-N+2 where E is the number of flow graph edges, and N is the number of flow graph nodes.

6. Cyclomatic complexity, V(G), for a flow graph, G is also defined as

 V(G)=P=1

 where P is the number of predicate nodes contained in the flow graph G.

Black box testing/behavioral testing (May 2016)

 It exercises all the functional requirements of the software.

 It does not know the internal working of the product.

 It specifies the functions of the software.

 It demonstrates that software functions are operational, ie whether the i/p is accepted and output is correctly

produced, and that the integrity of external information (database) is maintained.

 It does not check the logical errors present in the application.

Sample Application

Search engine is a very good example of a black box system. We enter the text that we want to search, by

pressing “search” we get the results. Here we are not aware of the actual process that has been implemented

to get the results. We simply provide the input and get the results

System testing techniques

Recovery Testing

Security Testing

Stress Testing

Performance Testing

Regression Testing

Unit Testing

 focuses verification effort on the smallest unit of s/w design.

 control paths are tested to uncover errors within the boundary of the module.

 focuses on the internal processing logic and data structures within the boundaries of the

component.

 can be conducted in parallel for multiple components.

Integration Testing

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 133

Integration testing is a systematic technique for constructing the s/w architecture while at the same time

“ conducting tests to uncover errors associated with interfacing”. The objective is to take unit tested

components and build a program structure that has been dictated by design.’

 There are two types of integration

3. non incremented integration

4. incremental integration

 ii) Write and explain the guidelines for developing quality assurance test cases in inventory

 control systems.(May 2015)

include<iostream.h>

#include<stdio.h>

#include<conio.h>

class invent

{

 public:

 int icode,iqty,iprice,q;

 char iname[20];

 void getdata(void);

 void display(void);

};

void invent::getdata(void)

{

 cout<<"\nEnter the Product Details:\n";

 cout<<"Enter the Item Name:\t";

 cin>>iname;

 cout<<"\nEnter the Item Code:\t";

 cin>>icode;

 cout<<"\nEnter the Item Quantity:\t";

 cin>>iqty;

 cout<<"\nEnter the Item Price:\t";

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 134

 cin>>iprice;

}

void invent::display(void)

{

 cout<<"\nItem Name:\t"<<iname;

 cout<<"\nItem Code:\t"<<icode;

 cout<<"\nStock Avilable:\t"<<iqty;

 cout<<"\nItem Price:\t"<<iprice;

 cout<<"\n..";

}

void main()

{

 clrscr();

 invent inv[20];

 int opt,q,j,out=0;

 do

 {

 cout<<"\n1.Store Item Details\n2.Display All\n3.Exit\n";

 cout<<"Enter the option:\t";

 cin>>opt;

 switch(opt)

 {

 case 1:

 cout<<"\nEnter the Number of items to add\t”;

 cin>>q;

 for(j=1;j<=q;j++)

 {

 inv[j].getdata();

 }

 break;

 case 2:

 for(j=1;j<=q;j++)

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 135

 {

 inv[j].display();

 }

 break;

 case 3:

 out=3;

 break;

 }

 if(out==3)

 break;

 }while(opt<=3);

 getch();

}

Output

Enter the option

1.Store Item Details

2.Display All

3.Exit

1

Enter the Number of items to add 1

Enter the Product Details

Enter the Item Name Pen

Enter the Item Code:1001

Enter the Item Quantity10

Enter the Item Price:100

Enter the option

1.Store Item Details

2.Display All

3.Exit

2

Item Name:: Pen

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 136

Item Code:1001

Stock Avilable: 10

Item Price:100

 Output –invalid input

Design

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 137

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 138

FORM 1:

Private Sub Command1_Click()

Form2.Show

End Sub

Private Sub Command2_Click()

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 139

Form3.Show

End Sub

Private Sub Command3_Click()

Form4.Show

End Sub

FORM 2:

Dim db As New ADODB.Connection

Dim rs As New ADODB.Recordset

Private Sub Command1_Click()

rs.Close

rs.LockType = adLockOptimistic

rs.Open , , adOpenKeyset

rs.AddNew

rs.Fields(0) = Text1.Text

rs.Fields(1) = Text2.Text

rs.Fields(2) = Text3.Text

rs.Fields(3) = Text4.Text

rs.Update

MsgBox "the data has been added", vbOKCancel

End Sub

Private Sub Command3_Click()

rs.Close

rs.LockType = adLockOptimistic

rs.Open , , adOpenKeyset

rs.Update

rs.Fields(0) = Text1.Text

rs.Fields(1) = Text2.Text

rs.Fields(2) = Text3.Text

rs.Fields(3) = Text4.Text

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 140

rs.Update

MsgBox "the data has been updated", vbOKCancel

End Sub

Private Sub Command4_Click()

Form1.Show

End Sub

Private Sub Command5_Click()

Form3.Show

End Sub

Private Sub Command6_Click()

End

End Sub

Private Sub Command7_Click()

MsgBox "do you want to clear the content", vbOKCancel

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

Text4.Text = ""

MsgBox "text cleared", vbOKOnly

End Sub

Private Sub Form_Load()

db.ConnectionString = "Provider=microsoft.jet.oledb.4.0;Data Source=Y:\pen\vb\stock.mdb;Persist

Security Info=false"

db.Open

Set rs = db.Execute("select * from stck")

rs.Close

rs.LockType = adLockOptimistic

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 141

rs.Open , , adOpenKeyset

dis

End Sub

Sub dis()

If (rs.EOF) Then

MsgBox "there is no data"

Else

Text1.Text = rs(0)

Text2.Text = rs(1)

Text3.Text = rs(2)

Text4.Text = rs(3)

End If

End Sub

FORM 3:

Dim db As New ADODB.Connection

Dim rs As New ADODB.Recordset

Private Sub Command1_Click()

rs.Close

rs.LockType = adLockOptimistic

rs.Open , , adOpenKeyset

rs.AddNew

rs.Fields(0) = Text1.Text

rs.Fields(1) = Text2.Text

rs.Fields(2) = Text3.Text

rs.Fields(3) = Text4.Text

rs.Fields(4) = Text5.Text

rs.Fields(5) = Text6.Text

rs.Update

MsgBox "the data has been added", vbOKCancel

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 142

End Sub

Private Sub Command1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Text6.Text = Val(Text4.Text) * Val(Text5.Text)

End Sub

Private Sub Command3_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Text6.Text = Val(Text4.Text) * Val(Text5.Text)

End Sub

Private Sub Command3_Click()

rs.Close

rs.LockType = adLockOptimistic

rs.Open , , adOpenKeyset

rs.Update

rs.Fields(0) = Text1.Text

rs.Fields(1) = Text2.Text

rs.Fields(2) = Text3.Text

rs.Fields(3) = Text4.Text

rs.Fields(4) = Text5.Text

rs.Fields(5) = Text6.Text

rs.Update

MsgBox "the data has been updated", vbOKCancel

End Sub

Private Sub Command4_Click()

Form1.Show

End Sub

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 143

Private Sub Command5_Click()

Form4.Show

End Sub

Private Sub Command6_Click()

End

End Sub

Private Sub Command7_Click()

MsgBox "do you want to clear the content", vbOKCancel

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

Text4.Text = ""

Text5.Text = ""

Text6.Text = ""

MsgBox "text cleared", vbOKOnly

End Sub

Private Sub Form_Load()

db.ConnectionString = "Provider=microsoft.jet.oledb.4.0;Data Source=Y:\pen\vb\stock.mdb;Persist

Security Info=false"

db.Open

Set rs = db.Execute("select * from ord")

rs.Close

rs.LockType = adLockOptimistic

rs.Open , , adOpenKeyset

dis

End Sub

Sub dis()

If (rs.EOF) Then

MsgBox "there is no data"

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 144

Else

Text1.Text = rs(0)

Text2.Text = rs(1)

Text3.Text = rs(2)

Text4.Text = rs(3)

Text5.Text = rs(4)

End If

End Sub

FORM 4:

Dim db As New ADODB.Connection

Dim rs As New ADODB.Recordset

Private Sub Command1_Click()

rs.Close

rs.LockType = adLockOptimistic

rs.Open , , adOpenKeyset

rs.AddNew

rs.Fields(0) = Text1.Text

rs.Fields(1) = Text2.Text

rs.Fields(2) = Text3.Text

rs.Fields(3) = Text4.Text

rs.Fields(4) = Text5.Text

rs.Fields(5) = Text6.Text

rs.Update

MsgBox "the data has been added", vbOKCancel

End Sub

Private Sub Command1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Text6.Text = Val(Text4.Text) * Val(Text5.Text)

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 145

End Sub

Private Sub Command3_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As

Single)

Text6.Text = Val(Text4.Text) * Val(Text5.Text)

End Sub

Private Sub Command3_Click()

rs.Close

rs.LockType = adLockOptimistic

rs.Open , , adOpenKeyset

rs.Update

rs.Fields(0) = Text1.Text

rs.Fields(1) = Text2.Text

rs.Fields(2) = Text3.Text

rs.Fields(3) = Text4.Text

rs.Fields(4) = Text5.Text

rs.Fields(5) = Text6.Text

rs.Update

MsgBox "the data has been added", vbOKCancel

End Sub

Private Sub Command4_Click()

Form1.Show

End Sub

Private Sub Command5_Click()

End

End Sub

Private Sub Command6_Click()

MsgBox "do you want to clear the content", vbOKCancel

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 146

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

Text4.Text = ""

Text5.Text = ""

Text6.Text = ""

MsgBox "text cleared", vbOKOnly

End Sub

Private Sub Form_Load()

db.ConnectionString = "Provider=microsoft.jet.oledb.4.0;Data

Source=Y:\pen\vb\stock.mdb;Persist Security Info=false"

db.Open

Set rs = db.Execute("select * from bill")

rs.Close

rs.LockType = adLockOptimistic

rs.Open , , adOpenKeyset

dis

End Sub

Sub dis()

If (rs.EOF) Then

MsgBox "there is no data"

Else

Text1.Text = rs(0)

Text2.Text = rs(1)

Text3.Text = rs(2)

Text4.Text = rs(3)

Text5.Text = rs(4)

End If

End Sub

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 147

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 148

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 149

 Output after testing with Rational Robot

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 150

 OUTPUT-INVALID INPUT

8. List and explain the challenges in testing the health care systems. (April/May2015)

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 151

UNIT-V

1. i)Explain in detail about the quality assurance testing.

 Quality Measures

Verification

- "Am I building the product right?"

Validation

- "Am I building the right product?"

Quality Assurance testing can be divided into 2 major categories.

i) Error Based Testing techniques search a given class’s methods for particular clues of interest, then describe how these clues should be

tested.

Eg: compute payroll method of employee class need to be tested.

 Employee.computepayroll(hours)

To test this method we must try different values for hours (say 40,0,-10,100) to see of the program can handle them. (also known as

testing the Boundary condition). This method should be able to handle any value; if not, error must be recorded and reported.

ii) Scenario based Testing (usage based Testing) concentrates on what the user does, not what the product does.

This means capturing use cases and the tasks users perform, then performing them and their variants as tests. It can also identify

interaction bugs.

 they often are more complex and realistic than error-based tests.

 they tend to exercise multiple subsystems in a single test.

Testing Objectives

o Testing is a process of executing a program with the intent of finding an error.

o A good test case is one that has a high probability of finding an as-yet undiscovered error.

MC5305/ Object Oriented Analysis and Design MCA 2018--2019

St. Joseph’s College of Engineering 152

