
MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 1 -

MC5304 PROGRAMMING WITH JAVA L T P C

 3 0 0 3

OBJECTIVES:

• To provide an overview of working principles of internet, web related functionalities

• To understand and apply the fundamentals core java, packages, database connectivity for

 computing

• To enhance the knowledge to server side programming.

• To Understand the OOPS concept & how to apply in programming.

UNIT I JAVA FUNDAMENTALS 9

Java features – Java Platform – Java Fundamentals – Expressions, Operators, and Control

Structures – Classes, Methods – Inheritance - Packages and Interfaces – Boxing, Unboxing –

Variable-Length Arguments (Varargs), Exception Handling.

UNIT II COLLECTIONS AND ADVANCE FEATURES 9

Utility Packages- Introduction to collection –Hierarchy of Collection framework – Generics,

Array list, LL, HashSet, Treeset, HashMap – Comparators – Java annotations – Premain method.

UNIT III ADVANCED JAVAPROGRAMMING 9

 Input Output Packages – Inner Classes – Java Database Connectivity - Introduction JDBC

Drivers - JDBC connectivity with MySQL/Oracle -Prepared Statement & Result Set – JDBC

Stored procedures invocation - Servlets - RMI – Swing Fundamentals - Swing Classes.

UNIT IV OVERVIEW OF DATA RETRIEVAL & ENTERPRISE APPLICATION

 DEVELOPMENT 9

 Tiered Application development - Java Servers, containers –Web Container – Creating Web

Application using JSP/Servlets – Web Frameworks Introduction to Spring/ Play Framework –

ORM Layer – Introduction to Hibernate.

UNIT V JAVA INTERNALS AND NETWORKING 9

Java jar Files-Introspection – Garbage collection – Architecture and design – GC Cleanup

process, Invoking GC, Generation in GC - Networking Basics Java and the Net – InetAddress –

TCP/IP Client Sockets – URL –URL Connection – TCP/IP Server Sockets – A Caching Proxy

HTTP Server – Datagrams.

 TOTAL : 45 PERIODS

REFERENCES:

1. Amritendu De, “Spring 4 and Hibernate 4: Agile Java Design and Development”, McGraw-

 Hill Education, 2015

2. Herbert Schildt, The Complete Reference – Java 2, Ninth Edition, Tata McGraw Hill, 2014

3. Joyce Farrell, “Java Programming”, Cengage Learning, Seventh Edition, 2014 35

4. John Dean, Raymond Dean, “Introduction to Programming with JAVA – A Problem Solving

 Approach”, Tata Mc Graw Hill, 2014.

5. Mahesh P. Matha, “Core Java A Comprehensive Study”, Prentice Hall of India, 2011

6. R. Nageswara Rao,“Core Java: An Integrated Approach”, DreamTech Press, 2016

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 2 -

PART A

UNIT I

1. Define Byte Code.

Byte code is a highly optimizes set of instruction designed to be executed by the JAVA run-time

system, which is called to be Java Virtual Machine(JVM). Java bytecode is the form of

instructions that the Java virtual machine executes. Each bytecodeopcode is one byte in length,

although some require parameters, resulting in some multi-byte instructions.

2. Define JVM.
JVM is an interpreter for bytecode. A Java program is interpreter by the JVM helps to solve the

major problems associated with downloading programs over the Internet. A Java virtual machine

(JVM) is a virtual machine capable of executing Java bytecode. It is the code execution

component of the Java software platform.

3. Define encapsulation.

Encapsulation is a mechanism that binds together code & the data it manipulates & keeps both

safe from outside interference & misuse. In other words, it is a protective wrapper that presents

the code & data from being arbitrarily accessed by other code defined outside the wrappers.

4. Define Inheritance.

Inheritance is the process by which one object acquires the properties of another objects. This

child inherits the properties of the parent group. Object-oriented programming allows classes to

inherit commonly used state and behavior from other classes.

5. Define Polymorphism.

Poly means “many forms” that polymorphism is a features that allows one interface to be used for

a general class factions. The concept of polymorphism can be expressed as “one interface, with

multiple method”.

6. Define comment.

Comments are basically being used to enter a remark into a program’s source file. There are 3

types of comments: (i) Single Line Comments: This begins with // & ends with the EOF. (ii)

Multiple Comments: This begins with /* & ends with */. These comments with multiple lines can

be given. (iii) Document Comments: This begins with /** & ends with */.

7. Briefly explain the syntax of public static void main(String a[]).

 public: This specifies that main() is accessible from outside of the class.

 Static: Specifies main()exists without any objects being defined.

 Void: Specifies that main() does not return a value.

8. Explain each words of the given statement.

 System.out.println(“This is a sample line”);

 System : is a name of the class that contain the object out.

 Out :is a static variable in the class System.

 Println : is a method in the object out.

9. What are the advantages of java comparing with other programming languages?

The advantages of java language:

 Object oriented

 dynamic

 distributed

 portable

 multithreaded language.

10. Distinguish between a class and interface.

http://en.wikipedia.org/wiki/Java_virtual_machine
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Java_%28software_platform%29

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 3 -

Class Interface

Methods in a class

are declared and are

implemented

Methods in an

interface are

declared and are not

implemented (i.e)

the methods do not

have abody

Variable in a class

can be of any type

Variable in an

interface are of type

final

We can’t have more

than one base

interface

We can have any

number of interface

11. What are the special features in Java that is not in C++?

 Distributed: Java programs can access data across a network.

 Compiled and interpreted: Java code we write is compiled to bytecode and interpreted

when we executed the program.

 Robust: Java programs are less prone to error.

 Multithreaded: it allows multiple parts of a program to run simultaneously.

 Dynamic: maintaining different versions of an application is very easy in Java.

12. Explain the syntax of jump statement in java.

 Break - when you use the break statement in the switch, it terminate the statement

sequence in a switch.

 Continue - Sometime you want to continue running the loop, but stop processing the

remainder of the code in its body for this particular iteration the continue statement

performs such an action.

 Return -the return statement is used to explicitly return from a method.

13. Write the syntax of iteration statement.

 (i) While

 While(condition)

 {

 //body of loop

 }

 (ii) do..while

 do

 {

 //body of loop

}

while(condition);

 (iii)for:

 for(initialization;condition;iteration)

 {

//body }

14. Discuss about binary operators in java

 + - Addition

 - - Subtraction

 * - Multiplication

 / - Division

 % - Modulus

15. Define Ternary operator?

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 4 -

Java includes a special ternary (three-way) operator that can replace certain types of if-then-else

statements. This operator is the ?, general form:

 expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is true,

then expression2 is evaluated; otherwise, expression3 is evaluated.

16. What is the difference between >>= and >>>= operators?

>>= Shift right assignment-Right shift AND assignment operator for ex: C >>= 2 is same as C =

C >> 2 &>>>= Shift right zero fill assignment-Zero fill right shift assignment (x = x >>> y)

17. What is Garbage Collection?

Objects are dynamically allocated by using the new operator, we wonder how such objects are

destroyed and their memory released for later reallocation. Java handles deallocation

automatically. This is called garbage collection. Garbage collection only occurs sporadically

during the execution of our program. It will not occur simply because one or more objects exist

that are no longer used.

18. Give an example for dynamic initialization of a variable?

public class MainClass {

 public static void main(String args[]) {

 double a = 3.0, b = 4.0;

 // c is dynamically initialized

 double c = Math.sqrt(a * a + b * b);

 System.out.println("Hypotenuse is " + c);

 }

}

19. Why java is called platform independent language?

Write once run anywhere: Java is a programming language which has its own virtual machine.

When you write a program using the Java language you can use it on any operating system which

has Java installed. This is different to previous programs and programming languages as they

were written for individual operating systems and needed to be re-written for a different operating

system.

20. What are the benefits of organizing classes into packages?

A Java package is a mechanism for organizing Javaclasses into namespaces. Java packages can

be stored in compressed files called JAR files, allowing classes to download faster as a group

rather than one at a time. Programmers also typically use packages to organize classes belonging

to the same category or providing similar functionality.

21. What is a package in Java?

Packages are containers for classes that are used to keep the class name space compartmentalized.

General form to define a package: Package pkg; wherepkg is the name of the package, Java

uses file system directories to store package. The directory name must match the package name

exactly. For Importing package: Import pkg1[.pkg2].classname.*;

22. What is the use of Throw class? Discuss with an example?

The exception class does not define any method of its own. It inherits those method provided by

thowable class. Thus, all exceptions, including those that we create, have the methods defined by

throwable. For example,

try

{ // statements

thrownewUserDefinedException();

 // statements

}

catch (UserDefinedException e)

{

http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Namespace_%28computer_science%29
http://en.wikipedia.org/wiki/JAR_file

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 5 -

System.out.printIn (“User defined exception caught”);

}

23.Define class. Write the structure of a class.

A class, in the context of Java, are templates that are used to create objects, and to define object

data types and methods.

Structure:

class classname {

type instance-variable1;

type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list)

{ // body of method }

type methodname2(parameter-list)

{ // body of method }

// ...

type methodnameN(parameter-list)

{ // body of method }

}

24. Class demo

{

int a;

 Static int b;

}

demo t1 =new demo();

demo t2= new demo();

In the above program, two objects t1 and t2 are created for the class demo. How

memory will be allocated for the static and non-static members of the class when

the objects are created? (DEC 2014)

For static memory, only one memory can be allocated. But for non static,each individual memory

can be allocated for the variable.

25.Write a java program to generate the following series : 3,8,13,18,23. (DEC 2014)

importjava.util.*;

class Series

{

 public staticvoid main(Stringargs[])

 {

 inta,d,n=1,t,b;

 Scanner sc = new Scanner(System.in);

 System.out.println("Enter first term of A.P");

 a=sc.nextInt();

 System.out.println("Enter difference");

 d=sc.nextInt();

http://www.google.com/search?q=allinurl%3ASystem+java.sun.com&bntl=1

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 6 -

 System.out.println("Enter the number of terms");

 b=sc.nextInt();

 while(b!=n-1)

 {

 t=(a+(n-1)*d);

 n++;

 System.out.print(t+" ");}}}

26. Define Interface.(DEC2015)

Methods in an interface are declared and are not implemented (i.e) the methods do not have a

body. Variable in an interface are of type final.

27. What is meant by Exception handling?(DEC 2015)

Exception handling is the process of responding to the occurrence, during computation,

of exceptions – anomalous or exceptional conditions requiring special processing – often

changing the normal flow of program execution. It is provided by specialized programming

language constructs or computer hardware mechanisms.

28. What is meant by abstraction? (Nov/Dec 2016)

The process of abstraction in Java is used to hide certain details and only show the essential

features of the object. In other words, it deals with the outside view of an object (interface). The

only good example i see for this across different sites is interface.

29.Mention the uses of interfaces. (Nov/Dec 2016)

A particular advantage of using interface in Java is that it allows multiple inheritance. The full

power of Interface is utilized when dependency injection techniques is used to inject required

implementation on run time.

UNIT II

1. Describe the Collections type hierarchy. What are the main interfaces, and what are the

 differences between them?
The Iterable interface represents any collection that can be iterated using the for-each loop.

The Collection interface inherits from Iterable and adds generic methods for checking if an

element is in a collection, adding and removing elements from the collection, determining its size

etc.

The List, Set, and Queue interfaces inherit from the Collection interface.

List is an ordered collection, and its elements can be accessed by their index in the list.

Set is an unordered collection with distinct elements, similar to the mathematical notion of a set.

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 7 -

Queue is a collection with additional methods for adding, removing and examining elements,

useful for holding elements prior to processing.

Map interface is also a part of the collection framework, yet it does not extend Collection. This is

by design, to stress the difference between collections and mappings which are hard to gather

under a common abstraction. The Mapinterface represents a key-value data structure with unique

keys and no more than one value for each key.

2. Describe various implementations of the Map interface and their use case differences.

One of the most often used implementations of the Map interface is the HashMap. It is a typical

hash map data structure that allows accessing elements in constant time, or O(1), but does not

preserve order and is not thread-safe.

To preserve insertion order of elements, you can use the LinkedHashMap class which extends

the HashMap and additionally ties the elements into a linked list, with foreseeable overhead.

The TreeMap class stores its elements in a red-black tree structure, which allows accessing

elements in logarithmic time, or O(log(n)). It is slower than the HashMapfor most cases, but it

allows keeping the elements in order according to some Comparator.

The ConcurrentHashMap is a thread-safe implementation of a hash map. It provides full

concurrency of retrievals (as the get operation does not entail locking) and high expected

concurrency of updates.

The Hashtable class has been in Java since version 1.0. It is not deprecated but is mostly

considered obsolete. It is a thread-safe hash map, but unlike ConcurrentHashMap, all its methods

are simply synchronized, which means that all operations on this map block, even retrieval of

independent values.

3. Explain the difference between LinkedList and ArrayList.

ArrayList is an implementation of the List interface that is based on an array. ArrayList internally

handles resizing of this array when the elements are added or removed. You can access its

elements in constant time by their index in the array. However, inserting or removing an element

infers shifting all consequent elements which may be slow if the array is huge and the inserted or

removed element is close to the beginning of the list.

LinkedList is a doubly-linked list: single elements are put into Node objects that have references

to previous and next Node. This implementation may appear more efficient than ArrayList if you

have lots of insertions or deletions in different parts of the list, especially if the list is large.

4. What is the difference between HashSet and TreeSet?

Both HashSet and TreeSet classes implement the Set interface and represent sets of distinct

elements. Additionally, TreeSet implements the NavigableSetinterface. This interface defines

methods that take advantage of the ordering of elements.

HashSet is internally based on a HashMap, and TreeSet is backed by a TreeMapinstance, which

defines their properties: HashSet does not keep elements in any particular order. Iteration over the

elements in a HashSet produces them in a shuffled order. TreeSet, on the other hand, produces

elements in order according to some predefined Comparator.

 5. How is HashMap implemented in Java? How does its implementation

 use hashCode and equals methods of objects? What is the time complexity of putting and

 getting an element from such structure?

The HashMap class represents a typical hash map data structure with certain design choices.

The HashMap is backed by a resizable array that has a size of power-of-two. When the element is

added to a HashMap, first its hashCode is calculated (an intvalue). Then a certain number of

lower bits of this value are used as an array index. This index directly points to the cell of the

array (called a bucket) where this key-value pair should be placed. Accessing an element by its

index in an array is a very fast O(1) operation, which is the main feature of a hash map structure.

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 8 -

A hashCode is not unique, however, and even for different hashCodes, we may receive the same

array position. This is called a collision. There is more than one way of resolving collisions in the

hash map data structures. In Java’s HashMap, each bucket actually refers not to a single object,

but to a red-black tree of all objects that landed in this bucket (prior to Java 8, this was a linked

list).

6. What is the purpose of the initial capacity and load factor parameters of a HashMap?

 What are their default values?
The initialCapacity argument of the HashMap constructor affects the size of the internal data

structure of the HashMap, but reasoning about the actual size of a map is a bit tricky.

The HashMap‘s internal data structure is an array with the power-of-two size. So

the initialCapacity argument value is increased to the next power-of-two (for instance, if you set

it to 10, the actual size of the internal array will be 16).

The initialCapacity is 16 by default, and the loadFactor is 0.75 by default, so you could put 12

elements in a HashMap that was instantiated with the default constructor, and it would not resize.

The same goes for the HashSet, which is backed by a HashMap instance internally.

7. Describe special collections for enums. What are the benefits of their implementation

 compared to regular collections?

EnumSet and EnumMap are special implementations of Set and Map interfaces correspondingly.

You should always use these implementations when you’re dealing with enums because they are

very efficient.An EnumSet is just a bit vector with “ones” in the positions corresponding to

ordinal values of enums present in the set. To check if an enum value is in the set, the

implementation simply has to check if the corresponding bit in the vector is a “one”, which is a

very easy operation. Similarly, an EnumMap is an array accessed with enum’s ordinal value as an

index. In the case of EnumMap, there is no need to calculate hash codes or resolve collisions.

8. What is the difference between fail-fast and fail-safe iterators?
Fail-fast iterators (those returned by HashMap, ArrayList, and other non-thread-safe collections)

iterate over the collection’s internal data structure, and they

throw ConcurrentModificationException as soon as they detect a concurrent modification.

Fail-safe iterators (returned by thread-safe collections such

as ConcurrentHashMap, CopyOnWriteArrayList) create a copy of the structure they iterate upon.

They guarantee safety from concurrent modifications. Their drawbacks include excessive

memory consumption and iteration over possibly out-of-date data in case the collection was

modified.

 9. How can you use Comparable and Comparatorinterfaces to sort collections?

The Comparable interface is an interface for objects that can be compared according to some

order. Its single method is compareTo, which operates on two values: the object itself and the

argument object of the same type. For instance, Integer, Long, and other numeric types

implement this interface. String also implements this interface, and its compareTo method

compares strings in lexicographical order.

The Comparable interface usually is implemented using natural ordering of the elements. For

instance, all Integer numbers are ordered from lesser to greater values. But sometimes you may

want to implement another kind of ordering, for instance, to sort the numbers in descending order.

The Comparator interface can help here.

As the Comparator interface is a functional interface, you may replace it with a lambda

expression, as in the following example. It shows ordering a list using a natural ordering

(Integer‘s Comparable interface) and using a custom iterator (Comparator<Integer> interface).

10. What is Difference between Hashtable and HashMap in Java?

This Java collection interview question is I guess most popular one. Most of Java programmer

who has at least 2 years of experience has seen this question on core Java or J2EE interview.

Well, there is much difference between them but most important is thread-safety, HashMap is not

thread-safe while Hashtable is a thread-safe collection. See Hashtable vs HashMap in Java for

http://javarevisited.blogspot.sg/2012/01/how-to-write-thread-safe-code-in-java.html
http://java67.blogspot.sg/2012/08/5-difference-between-hashtable-hashmap-Java-collection.html

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 9 -

more differences between HashMap and Hashtable in Java.

11. What is the difference between Hashtable and ConcurrentHashMap in Java?

Another frequently asked Java collection interview question post-Java 5 world which introduced

Concurrent Collection classes like ConcurrentHashMap and CopyOnWriteArrayList along with

Concurrency utilities e.g. CyclicBarrier and CountDownLatch. Well, both Hashtable

and ConcurrentHashMap are thread-safe here but later provides more scalability than former.

See Difference between ConcurrentHashMap and Hashtable in Java for the answer of this Java

collection interview question.

12. What is Difference between Iterator and Enumeration in Java?

One of the classic interview Questions asked on Java collection framework, This is pretty old and

programmer who has been working in Java for 4 to 6 years must have seen this question before.

Well, Iterator and ListIterator in Java is a new way to iterator collection in Java and provides the

ability to remove an object while traversing while Enumeration doesn't allow you to remove the

object. See Iterator vs Enumeration in Java for more differences between both of them.

13. What is Difference between fail-safe and fail-fast Iterator in Java?

This is relatively new Java collection interview question because the concept of a fail-safe iterator

is come along with ConcurrentHashMap and CopyOnWriteArrayList. See Difference between

fail-safe and fail-fast Iterator in Java for the answer of this Java collection question.

14. How HashMap works internally in Java?

One of the most frequently asked Java interview question to experience Java programmer of 4 to

5 years of experience. I have seen this question on big companies like Morgan Stanley, JP

Morgan, Nomura and other banks e.g. Barclays Capital. See How HashMapworks internally in

Java for detailed answer of this Java collection interview question.

15. Can you write code to traverse Map in Java on 4 ways?

Another Java collection question which appears as part of Java Coding interview question and

appeared in many interviews. As you know there are multiple ways to traverse or iterate Map in

Java e.g. for loop, while loop using Iterator etc. 4 ways to iterator Map in Java has detailed

explanation and sample code which is sufficient to answer this Java collection framework

interview question.

16. What is the difference between Vector and ArrayList in Java?

Along with Difference between HashMap and Hashtable, this Java collection interview question

is probably second in the list of frequently asked question on Java collection framework.

Both ArrayList and Vector implements List interface from Java 4 but they have differences

including synchronization, See the difference between Vector and ArrayList in Java for the

complete answer of this collection interview question in Java.

17. What is the difference between ArrayList and LinkedList in Java?

A follow-up question which is asked in response to previous Java collection interview question.

Here also both LinkedList and ArrayList are List implementation but their internal data-structure

is different, one is derived from Array while other is derived from LinkedList. See LinkedList vs

ArrayList in Java to answer this Java Collection interview question.

18. What is the difference between List and Set in Java?

List vs Set is one of the most important concepts to understand in Java Collection framework and

this Java collection interview question focus on that. Most important difference between them is

that List allows duplicates and maintain insertion order while Set doesn't allow duplicates and

doesn't maintain any order. See Difference between Set and List in Java to see more differences

between them.

19. How do you find if ArrayList contains duplicates or not?

Since List allows duplicates this becomes a followup question of earlier Java collection

framework interview question. See How to check if ArrayList contains duplicates or not for the

answer of this Java collection question.

20. Does not overriding a hashCode() method have any performance implication?

http://javarevisited.blogspot.sg/2012/07/cyclicbarrier-example-java-5-concurrency-tutorial.html
http://javarevisited.blogspot.sg/2012/07/countdownlatch-example-in-java.html
http://javarevisited.blogspot.sg/2011/04/difference-between-concurrenthashmap.html
http://javarevisited.blogspot.sg/2011/10/java-iterator-tutorial-example-list.html
http://javarevisited.blogspot.sg/2010/10/what-is-difference-between-enumeration.html
http://javarevisited.blogspot.sg/2012/02/fail-safe-vs-fail-fast-iterator-in-java.html
http://javarevisited.blogspot.sg/2012/02/fail-safe-vs-fail-fast-iterator-in-java.html
http://javarevisited.blogspot.com/2011/02/how-hashmap-works-in-java.html
http://javarevisited.blogspot.com/2011/02/how-hashmap-works-in-java.html
http://java67.blogspot.sg/2012/08/10-java-coding-interview-questions-and.html
http://javarevisited.blogspot.sg/2011/12/how-to-traverse-or-loop-hashmap-in-java.html
http://javarevisited.blogspot.sg/2010/10/difference-between-hashmap-and.html
http://javarevisited.blogspot.sg/2011/09/difference-vector-vs-arraylist-in-java.html
http://javarevisited.blogspot.sg/2012/02/difference-between-linkedlist-vs.html
http://javarevisited.blogspot.sg/2012/02/difference-between-linkedlist-vs.html
http://javarevisited.blogspot.sg/2012/04/difference-between-list-and-set-in-java.html
http://javarevisited.blogspot.sg/2012/02/how-to-check-or-detect-duplicate.html

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 10 -

A poor hashCode function will result in frequent collisions in HashMap, which eventually

increases the time for adding an object into said HashMap.From Java 8 onwards, though,

collisions will not impact performance as much as in earlier versions because, after a threshold,

the linked list will be replaced by the binary tree, which will give you O(log N) performance in

the worst case, as compared to O(N) of a linked list.

UNIT III

1. Define RMI and List out the advantages of RMI(DEC 2015)

RMI is focused on java, with connectivity to existing systems using native methods. Thus RMI is

a natural, direct and is fully-powered to provide us with a distributed computing technology.

 Object Oriented

 Distributed Garbage Collection

 Parallel computing

 Safe & Secure.

2. What is a stub ?

A Stub is a java object that resides on the client machine. Its function is to present the same

interfaces as the remote server. Once you create the stub, you define its behavior in the stub data

table or you enter code in the user code class that is associated with the stub.

3. List out the steps to run simple Client / Server application using RMI

Server side program: (i) create a interface (ii) create a class which implement the interface (iii)

create a class which create a object for the class which implements the interface.

Client side program: (i) create a program implements a client side of this application. (ii)

Generate stubs and skeletons. (iii) install files on the client and server machines. (iv) start the

RMI registry on the server machine (v) Start the server (vi) Start the client.

4. What are the disadvantages of RMI?

 The most popular browsers like internet Explorer ant Netscape Navigator do not support

RMI fully.

 While accepting the connections on the internet, rmi registry experiences some problem

which requires the registry to be shutdown and started again.

 In environment prior to java 1.2.2, server sockets that handle the connections from rmi

clients can live on indefinitely even after the clients have shut down.

 RMI registry allows client connections to be made for only one specific hostname. This

means that server application cannot support multiple domains on a single web server

which limits the deployment options.

5. Write short notes on JDBC.

JDBC standard is intented for people developing industrial-strength database applications.JDBC

makes java effective for developing enterprise information system.java.sql is the JDBC package

that contains classes & interfaces that enable a java program to interact with a database.

6. Write short notes on JDBC drivers.
A JDBC driver is basically an implementation of the function calls specified in the JDBC API for

a particular vendor’s RDBMS. Hence, a java program with JDBC function calls can access any

RDBMS that has a JDBC driver available. A driver manager is used to keep track of all the

installed drivers on the system. The operations of driver manager are getDriver, registerDriver,

deregisterDriver.

7. What are the advantages of servlet over CGI?

 Performance is significantly better, servlet execute within the address space of a web

server.

 Servlets are platform independent

 The java security manager on the server enforces a set of restrictions to protect the

resources on a server machine.

http://javarevisited.blogspot.sg/2016/01/how-does-java-hashmap-or-linkedhahsmap-handles.html
https://click.linksynergy.com/fs-bin/click?id=JVFxdTr9V80&subid=0&offerid=323058.1&type=10&tmpid=14538&RD_PARM1=https%3A%2F%2Fwww.udemy.com%2Fjava-8-core-training-%2F

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 11 -

 The full functionality of java class libraries is available to a servlet.

8. Write down the methods of servlet interface

void destroy() –called when the servlet is unloaded.

ServletConfig getServletConfig() –returns a ServletConfig object that contains any

initialization parameters.

String get ServletInfo() – returns a string describing the servlet.

void init(ServletConfig sc) throws ServletException –called when the servlet is

initialized .Initialization parameters for servlet can be obtained from sc. An unavailable

exception should be thrown if the servlet is not initialized.

Void Service(ServletRequest req,ServletResponse res) throws ServletException, IOException-

Called to process a request from a client. The request from the client can be read from req.

response to the client can be written to res.

9. What are the advantages of multicasting?

 The first major advantage of using multicasting is the decrease of the network load.

 Multicasting can be very helpful is in resource discovery. There are many applications in

which a host to find out whether a certain type of service is available or not

 It support for data casting applications.

 Multicasting is flexibility in joining and leaving a group provided by multicasting can

make the variable membership much easier to handle.

10. What is multicasting?

Multicasting is the internet version of broadcasting .It is similar in many ways to a television or

radio station that broadcasts its signal. The signal originates from one source,but it can reach

everyone in the station’s signal area. The information passes by on those who do not want to

catch the signal or do not have the right equipment.

11. Which IP address is used for mullticasting?
Class D IPV4 is used for multicasting. The address range is 224.0.0.1 to 239.255.255.255

12. Define TTL.
Broadcast packets has a finite life is called TTL(Time To Live) in order to avoid bouncing of the

packets around the network. Time-to-live (TTL) is a value in an Internet Protocol (IP) packet that

tells a network router whether or not the packet has been in the network too long and should be

discarded.

13. What is an inner class? Explain with an example? (DEC 2015)

A class within the class is called as an inner class.

class A

{ int a, b,c;

 class B

 { // coding for inner class

}}

14. What is the difference between CGI and servlets?

 Performance is significantly better, servlet execute within the address space of a web

server.

 Servlets are platform independent

 The java security manager on the server enforces a set of restrictions to protect the

resources on a server machine.

 The full functionality of java class libraries is available to a servlet.

15. What is the purpose of Servlets?

Usually a servlets is used to develop web applications in a web server. The servlets are used to

create web pages which are called dynamic web pages which mean the content of a web page can

change according to the input sent from the web client. Servlets are server independent and

platform independent.

http://searchnetworking.techtarget.com/definition/packet
http://searchnetworking.techtarget.com/definition/router

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 12 -

16. Define serialization with an example?

Serialization is the process of writing the state of an object to a byte stream. At a later time, you

may restore these objects by using the process of deserialization. Interfaces and classes support

serialization

17. Define Servlet Life Cycle?

 init() method - invoked when the servlet is first loaded into memory

 service() - called for each HTTP request (for processing)

 destroy() - unloads the servlet from its memory.

18. How is anonymous inner class used for Event handling?

// Anonymous inner class demo.

import java.applet.*;

import java.awt.event.*;

/* <applet code="AnonymousInnerClassDemo" width=200 height=100> </applet> */

public class AnonymousInnerClassDemo extends Applet

 {

public void init() {

addMouseListener(new MouseAdapter()

{

public void mousePressed(MouseEvent me)

{

showStatus("Mouse Pressed");

}}

}

}

19. What is the format of inner class after it is compiled?

 OuterClass$InnerClass.class

20. What is MIME?

Multipurpose Internet Mail Extensions (MIME) is an Internet standard that extends the format of

email to support:

 Text in character sets other than ASCII

 Non-text attachments

 Message bodies with multiple parts

 Header information in non-ASCII character sets

21. What are the two types of I/O streams?

Byte streams provide a convenient means for handling input and output of bytes. Byte streams are

used, when reading or writing binary data. Character streams provide a convenient means for

handling input and output of characters.

22. Distinguish between Applets and Servlets?

Applet is an application designed to be transmitted over the internet and executed by a java

compatible web browser. Applets dynamically extend the functionality of a Web browser.

Servlets are applet program written on the server side. Servlets are small programs that execute

on the server side of a Web connection. Servlets dynamically extend the functionality of a Web

server.

23. Explain how to handle character arrays in Java programs?
CharArrayReader is an implementation of an input stream that uses a character array as the

source.

(i) CharArrayReader(char array[])

(ii) CharArrayReader(char array[], int start, int numChars) where array is the input source and

the second constructor creates a Reader from a subset of your character array that begins with

the character at the index specified by start and is numChars long.

24. Define Swing?

http://en.wikipedia.org/wiki/Internet_standard
http://en.wikipedia.org/wiki/Email
http://en.wikipedia.org/wiki/Character_set
http://en.wikipedia.org/wiki/ASCII

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 13 -

Swing is a set of classes that provides more powerful and flexible components than are possible

with the AWT. Unlike AWT components, Swing components are not implemented by platform-

specific code. Instead, they are written entirely in Java and, therefore, are platform-independent.

The term lightweight is used to describe such elements.

25. Explain swing classes?

Class Description

AbstractButton Abstract superclass for Swing buttons.

ButtonGroup Encapsulates a mutually exclusive set of buttons.

ImageIcon Encapsulates an icon.

JApplet The Swing version of Applet.

JButton The Swing push button class.

JCheckBox The Swing check box class.

JComboBox Encapsulates a combo box (an combination of a drop-down list and text field).

JLabel. The Swing version of a label

JRadioButton The Swing version of a radio button.

JScrollPane Encapsulates a scrollable window.

JTabbedPane Encapsulates a tabbed window.

JTable Encapsulates a table-based control.

JTextField The Swing version of a text field.

JTree Encapsulates a tree-based control.

26. Specify the difference between “Get” and “Post” methods in Java servlets. (DEC 2014)

GET and POST basically allow information to be sent back to the webserver from a browser (or

other HTTP client for that matter).

Imagine that you have a form on a HTML page and clicking the "submit" button sends the data in

the form back to the server, as "name=value" pairs.

Choosing GET as the "method" will append all of the data to the URL and it will show up in the

URL bar of your browser. The amount of information you can send back using a GET is

restricted as URLs can only be 1024 characters.

27. Draw java swing class hierarchy.(DEC 2014)

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 14 -

28. List any four interfaces defined by java.util. (Nov/Dec 2016)

Abstract Interfaces, strictfp Interfaces, Generic Interfaces and Type Parameters, Superinterfaces

and Subinterfaces, Enumeration interfaces defines method to enumerate through collection of

object.

29.Mention any two features of Swing. (Nov/Dec 2016)

Lightweight Components

Swing components are lightweight as they are written entirely in Java and do not depend on

native peers (platform specific code resources). Rather, they use simple drawing primitives to

render themselves on the screen.

Pluggable Look and Feel

The pluggable look arid feel feature allows us to tailor the look and feel of the application and

applets to the standard looks like, Windows and Motif. We can even switch to different look and

feel at runtime.

UNIT IV

.

1. What is considered as a web component?
Java Servlet and Java Server Pages technology components are web components. Servlets are

Java programming language that dynamically receives requests and makes responses. JSP pages

execute as servlets but allow a more natural approach to creating static content.

2. What is JSF?
JavaServer Faces (JSF) is a user interface (UI) designing framework for Java web applications.

JSF provides a set of reusable UI components, a standard for web applications. JSF is based on

MVC design pattern. It automatically saves the form data to the server and populates the form

date when display on the client side.

3. What is Hibernate?
Hibernate is an open source object-relational mapping and query service. In hibernate we can

write HQL instead of SQL which save developers to spend more time on writing the native SQL.

Hibernate has a more powerful association, inheritance, polymorphism, composition, and

collections. It is a beautiful approach for persisting into the database using the Java objects.

Hibernate also allows you to express queries using Java-based criteria.

4. What is the limitation of hibernate?
 Slower in executing the queries than queries are used directly.

 Only query language support for composite keys.

 No shared references to value types.

5. What are the advantages of hibernate?
 Hibernate is portable i mean database independent, Vendor independence.

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 15 -

 Standard ORM also supports JPA

 Mapping of the Domain object to the relational database.

 Hibernate is better than plain JDBC.

 JPA provider in JPA based applications.

6. What is ORM?

ORM stands for Object-Relational mapping. The objects in a JAVA class which is mapped into

the tables of a relational database using the meta data that describes the mapping between the

objects and the database. It works by transforming the data from one representation to another.

7. Differentiate between save and saveorupdate.

Save()-This method in Hibernate is used to store an object in the database. It inserts an entry if

the record doesn’t exist, otherwise not.

Saveorupdate()- This method in the hibernate is used for updating the object using identifier. If

the identifier is missing this method calls save(). If the identifier exists, it will call update method.

8. How to invoke a stored procedure in hibernate?

{? = call thisISTheProcedure() }

9. What are the benefits of ORM?

 Productivity

 Maintainability

 Performance

 Vendor Independence

10. What are the core interfaces of Hibernate framework?

 Session interface

 Session factory interface

 Configuration interface

 Transaction interface

 Query and Criteria interface

11. What is the file extension used for hibernate mapping file?

The name of the file should be like this: filename.hbm.xml

12. What is the Hibernate proxy?

An object proxy is just a way to avoid retrieving an object until you need it. Hibernate 2 does not

proxy objects by default.

13. What is HQL?

Hql STANDS FOR Hibernate Query Language. Hibernate allows to the user to express queries in

its portable SQL extension, and this is called as HQL. It also allows the user to express in native

SQL.

14. What are the collections types in Hibernate?

Set, List, Array, Map, Bag are collection type in Hibernate.

15. Differentiate between .ear, .jar and .war files.

.jar files: These files are with the .jar extension. The .jar files contain the libraries, resources and

accessories files like property files.

.war files: These files are with the .war extension. The .war file contains JSP, HTML, javascript

and other files necessary for the development of web applications.

.ear files: The .ear file contains the EJB modules of the application.

16. What are the different modules in spring?

There are seven core modules in spring

 The core container module

 O/R mapping module

 DAO module

 Application context module

 Aspect oriented Programming

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 16 -

 Web module

 MVC module

17. What are the benefits of Spring Framework?

 Lightweight container

 Spring can effectively organize your middle tier objects

 Initialization of properties is easy. No need to read from a property file

 Application code is much easier to unit test

 Objects are created lazily, singleton-configuration

 Spring’s configuration management services can be used in any architectural layer

18. What is Play Framework?

Play Framework makes it easy to build scalable, fast and real-time web applications with Java

and Scala. In other words Play Framework is a core offering of the Type safe Reactive Paltform.

It is a web app framework, written in Scala and Java that provides iterative and Reactive

application development very simple. The Play is a clean alternative to the legacy Enterprise Java

stacks.

19. What do you mean by the Java Collection Framework?

Collections are utilized in various programming languages and basic release contained some

classes for collections such as Vector, Stack, Hashtable, and Array. But the more scope and uses

Java 1.2 came up with collections Framework the collections interfaces, implementations and

different type algorithms.

20. What are the advantages of Collections Framework?

Some of the advantages of collections framework are:

 The reduce development effort by using core collection classes rather than defining

collection classes.

 The code quality is improved with the use of completely tested collections framework

classes.

 Reduce some effort for code maintenance by utilizing collection classes with the JDK.

 Collection framework also provides reusability and Interoperability.

UNIT V

1. Define Java jar Files

A JAR (Java Archive) is a package file format typically used to aggregate many Java class

files and associated metadata and resources (text, images, etc.) into one file to distribute

application software or libraries on the Java platform.

In other words, a JAR file is a file that contains compressed version of .class files, audio

files, image files or directories. We can imagine a .jar files as a zipped file(.zip) that is

created by using WinZip software. Even , WinZip software can be used to used to extract the

contents of a .jar

2. How to create Java jar files?

To create a .jar file , we can use jar cf command in the following way:

Jar cfjarfilenameinputfiles

Here, cf represents create the file. For example , assuming our package pack is available in

C:\directory

3. How to view a Java jar files?

 Viewing a JAR file: To view the contents of .jar files, we can use the command as:

Jar tfjarfilename

Here ,tf represents table view of file contents. For example, to view the contents of our

pack.jar file ,

4. Define Introspection.

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 17 -

Introspection is the automatic process of analyzing a bean's design patterns to reveal the

bean's properties, events, and methods. This process controls the publishing and discovery of

bean operations and properties.

5. What are the different advantages in Java Introspection?

Introspection is an automatic process in which the bean's design patterns are analyzed to

extract the bean's properties, events, and methods. Introspection has some great advantages

as under:

 Portability.

 Re-usability.

6. What are the Different classes in Java Introspection?

BeanDescriptor, BeanInfo, FeatureDescriptor, EventSetDescriptor

MethodDescriptor, PropertyDescriptor, IndexedPropertyDescriptor

Introspector ,SimpleBeanInfo

7. What is meant by garbage collection?

Java garbage collection is the process by which Java programs perform automatic memory

management. Java programs compile to bytecode that can be run on a Java Virtual Machine,

or JVM for short. When Java programs run on the JVM, objects are created on the heap,

which is a portion of memory dedicated to the program.

8. What are the advantages of Java Garbage Collection?

The biggest benefit of Java garbage collection is that it automatically handles deletion of

unused objects or objects that are out of reach to free up vital memory

resources. Programmers working in languages without garbage collection (like C and C++)

must implement manual memory management in their code.

9.Define Java virtual Machine.

JVM(Java Virtual Machine) acts as a run-time engine to run Java applications. JVM is the

one that actually calls the main method present in a java code. JVM is a part of JRE(Java

Run Environment).

10.What is meant by Java Virtual machine?

A virtual machine (VM) is a software implementation of a machine (i.e. a computer) that

executes programs like a physical machine. Originally, Java was designed to run based on a

virtual machine separated from a physical machine for implementing WORA (Write Once

Run Anywhere), although this goal has been mostly forgotten

11.What are the main features of Java Virtual Machine?

Stack-based virtual machine, Symbolic reference, Garbage collection, Guarantees platform

independence by clearly defining the primitive data type, Network byte order

12. What is meant by Java Byte Code?

To implement WORA, the JVM uses Java bytecode, a middle-language between Java (user

language) and the machine language. This Java bytecode is the smallest unit that deploys the

Java code.

 13. What are sockets?

A socket is an endpoint for communication. Socket is an abstraction for an endpoint of

communication that can be manipulated with a file descriptor. Scope of a socket is the

communication domain in which it exists. A socket address is the combination of an IP

address and a port which is mapped to the application program process.

 14.How do you create a socket?
 Socket is created using the socket() system call. The syntax is as follows

sockfd = socket(int family, int type, int protocol).

 sockfd refers to file descriptor for created socket and family represents address family

 It can be AF_INET (IPV4) AF_INET6 (IPV6). Here type represents the socket type.

 15.What is the use of recv() function?

This function is used to receive data from remote peer. The syntax is

http://beginnersbook.com/2013/04/java-garbage-collection/
http://en.wikipedia.org/wiki/TCP_and_UDP_port

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 18 -

 recv(int sockfd, char *buffer, int nbytes, int flags)

 Argumentsockfd represents the socket file descriptor to read from, buffer represents the

 address of buffer to read data into and nbytes refers the number of bytes to read.

 16.Give the use of bind method

 int bind(intsockfd,conststructsockaddr*myaddr,socklen_taddrlen);

 This function is used to assign a local protocol address (“name) to a socket. This association

 with an address must be performed with the bind() system call before the socket can accept

 connections to other hosts.

 17. Give a brief note on accept() function
 This function Wait for and accept an incoming connection. It creates a new socket for the

 accepted connection (listen socket continues “listening”). The syntax is

 newsockfd = accept(intsockfd, structsockaddr_in *peername, int peername_len)

newsockfd refers to sockfd for newly accepted socket, sockfdrepresents the listening

socket descriptor and peername is the socket address of the connected peer process.

 18. Define Copy-On-Write
 Instead of making a complete copy of parent’s dataspace, heap, stack,parent& child can share

 these regions(read-only copy). If either of the process tries to modify this region, the kernel

 then makes a copy of that memory alone.

 19. Give the characteristics of connectionless (datagram) network.

 In connectionless (datagram) network, no dedicatedpath is required between two nodes. Each

 packet contains the full source and destination address. Each packet is routed independently. It

 is suitable for dynamic bandwidth environment.

 20. Write short note son java Inetaddress.

 Java InetAddress class represents an IP address. The java.net.InetAddress class provides

 methods to get the IP of any host name for example www.javatpoint.com, www.google.com,

 www.facebook.com etc.

 21.Write an example of Inet address.

import java.io.*;

import java.net.*;

public class InetDemo{

public static void main(String[] args){

try{

InetAddress ip=InetAddress.getByName("www.javatpoint.com");

System.out.println("Host Name: "+ip.getHostName());

System.out.println("IP Address: "+ip.getHostAddress());

}catch(Exception e){System.out.println(e);}

}

}

PART B

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 19 -

UNIT I

1. Explain the features of Java.

Compiled & Interpreted

A computer language is either compiled or interpreted. Java combines both these

approaches together to make java as a two stage systems.

 Simple

 Object oriented

 Platform independent & Portable

 Multithreading

 High Performance:

 Robust & Secure

 Distributed

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 20 -

2. Explain package in detail with example.

 Packages are containers for classes that are used to keep the class name space separately.

 A unique name is to be used for each class to avoid name collisions.

Defining a package:

 To create a package, include a package command as the first statement in java source

file.

 The package statement defines a name space in which classes are stored.

Syntax: package Mypackage; Here Mypackage is the name of the package.

 We can have a hierarchy of packages.

Syntax:package pkg1[.pkg2][.pkg3];

 Inside pack1 folder:

package pack1;

public class student

{

 String name;

 String course;

 int tot, avg;

 public void initialise(String s1,String c)

 {

 name=s1;

 course=c;

 }

 public void calc(int m1,int m2,int m3)

 {

 tot=m1+m2+m3;

 avg=tot/3;

 }

 public void display()

 {

 System.out.println("\nStudent name : " +name);

 System.out.println("\nCourse : " +course);

 System.out.println("\nTotal : " +tot);

 System.out.println("\nAverage : " +avg);

 }

}

MainClass(outside pack1)

import java.io.*;

import pack1.*;

class packeg extends student

{

 public static void main(String args[])throws IOException

 {

 int i;

 BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

 String s,s1,s2;

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 21 -

 int m1,m2,m3;

 int no;

 System.out.println("\nEnter the number of students :");

 s=br.readLine();

 no=Integer.parseInt(s);

 for(i=1;i<=no;i++)

 {

 System.out.println("\nEnter Name:");

 s1=br.readLine();

 System.out.println("\nEnter Course :");

 s2=br.readLine();

 packeg p=new packeg();

 p.initialise(s1,s2);

 System.out.println("\nEnter the marks :");

 m1=Integer.parseInt(br.readLine());

 m2=Integer.parseInt(br.readLine());

 m3=Integer.parseInt(br.readLine());

 p.calc(m1,m2,m3);

 p.display();

 }

 }

}

3. Explain interface in detail with example.(DEC2014)

Defining Interfaces:

 It is basically a kind of class. Like classes, interfaces contain methods and variables.

 But the interface defines only abstract methods and final fields.

Syntax: interface interfacename {

 variable declaration;

 method declaration; }

Extending interfaces:

 Like classes, interfaces can also be extended.

 The new sub interface will inherit all the members of the super interface.

 This is done by extends keyword.

Implementing interfaces:

 Interfaces are used as “super classes” whose properties are inherited by classes.

class class-name implements interface-name

 { Body of class-name }

The class class-name implements the interface interface-name.

interface area //Interface defined

 {

 final static float pi=3.14;

 float compute(float x,float y);

 }

Class rectangle implements area

 {

 public float compute(float x,float y)

 {

 return(x*y);

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 22 -

 }

 }

Class circle implements area

 {

 public float compute(float x,float y)

 {

 return(pi*x*x);

 }

 }

class test

 {

 public static void main(String args[])

 {

 rectangle r=new rectangle();

 circle c=new circle();

area a; //Interface object

a=r;

System.out.println(“Area of rect:”+a.compute(10,20));

a=c;

System.out.println(“Area of circle:”+a.compute(10,0));

 }

 }

4. Illustrate with an example how exception handling is done in Java.

i) Exception Handling

 A Java exception is an object that describes an exceptional (that is, error) condition that

has occurred in a piece of code.

 When an exceptional condition arises, an object representing that exception is created

and thrown in the method that caused the error.

 That method may choose to handle the exception itself, or pass it on.

 Exceptions can be generated by the Java run-time system, or they can be manually

generated by your code. Manually generated exceptions are typically used to report

some error condition to the caller of a method.

Five keywords

try, catch, throw, throws and finally.

General form of an exception-handling block

Types of Exception: (i) Built – in Exception (ii) User defined exception

class Exc2 {

public static void main(String args[]) {

int d, a;

try { // monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

} catch (ArithmeticException e) {// catch divide-by-zero error

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 23 -

}

}

 ii) What are the uses of keyword final in java?

 A java variable can be declared using the keyword final. Then the final variable can be

assigned only once.

 A variable that is declared as final and not initialized is called a blank final variable. A

blank final variable forces the constructors to initialise it.

 Java classes declared as final cannot be extended. Restricting inheritance!

 Methods declared as final cannot be overridden. In methods private is equal to final, but in

variables it is not.

 final parameters – values of the parameters cannot be changed after initialization. Do a

small java exercise to find out the implications of final parameters in method overriding.

class FinallyDemo {

// Through an exception out of the method.

static void procA() {

try

{

System.out.println("inside procA");

throw new RuntimeException("demo");

}

finally

{

System.out.println("procA's finally");

}

}

// Return from within a try block.

static void procB() {

try

{

System.out.println("inside procB");

return;

}

finally

{

System.out.println("procB's finally");

}

}

// Execute a try block normally.

static void procC() {

try

{

System.out.println("inside procC");

}

finally

{

System.out.println("procC's finally");

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 24 -

}

}

public static void main(String args[]) {

try

{

procA();

}

catch (Exception e)

{

System.out.println("Exception caught");

}

procB();

procC();

}

}

5. Write a java program to perform the following:

(i) To find the transpose of a given matrix ‘A’

public class Trans {

 public static void main(String args[]) {

 // initialize the variable

 int[][] a = { { 5, 1, 1 }, { 3, 6, 0 }, { 0, 5, 9 } };

 // print the matrix

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 3; j++) {

 System.out.print(a[i][j]);

 }

 System.out.println();

 }

 // operation for transpose

 for (int i = 0; i < 3; i++) {

 for (int j = i + 1; j < 3; j++) {

 int temp = a[i][j];

 a[i][j] = a[j][i];

 a[j][i] = temp;

 }

 System.out.println();

 }

 System.out.println("Transpose matrix:");

 // After Transpose the matrix print the result

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 3; j++) {

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 25 -

 System.out.print(a[i][j]);

 }

 System.out.println();

 }

 }

}

(ii) to find the sum of the diagonal elements for a given matrix ‘B’

import java.io.*;

import java.lang.*;

public class Sum_Diagonal

{

 public static void main(String args[])throws IOException {

 BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

 System.out.println("Enter the size of 2D array :");

 int i=Integer.parseInt(br.readLine());

 int d[][]=new int;

 int j,k;

 int sum1=0,sum2=0;

 BufferedReader br1=new BufferedReader(new InputStreamReader(System.in));

 System.out.println("Enter the values of 2D array of "+i+" * "+i+" matrix ");

 for(j=0;j<i;j++) {

 for(k=0;k<i;k++) {

 d[j][k]=Integer.parseInt(br1.readLine()); }

 System.out.println(); }

 for(j=0;j<i;j++) {

 for(k=0;k<i;k++)

 System.out.print(d[j][k]+" ");

 System.out.println() ; }

 for(j=0;j<i;j++) {

 sum1=sum1+d[j][j]; }

 k=i-1;

 for(j=0;j<i;j++) {

 if(k>=0) {

 sum2=sum2+d[j][k];

 k--; } }

 System.out.println("Sum of Digonal elements are :"+sum1+" "+sum2); } }

6. Write Java program to Check whether the given matrix is upper triangular or not.

import java.io.*;

class uppertri

{

void upper()

{

int count;

int d[][] = { { 1, 2, 6 }, { 3, 8, 5 }, { 5, 6, 7 } };

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 26 -

 int k = 0, j = 0;

 int sum1 = 0, sum2 = 0;

 for (j = 0; j < d.length; j++)

{

 for (k = 0; k < d.length; k++)

 System.out.print(d[j][k] + " ");

 System.out.println();

}

for(i = 0; i <= d.length; i++)

{

for(j = 0; j <= d.length; j++)

{

if(i <= j)

{

if(d[i][j] == 0)

count++;

}

}

}

if(count == 3)

System.out.println("\nThe Matrix is upper triangular\n");

else

System.out.println ("\nThe Matrix is not upper triangular\n");

}

}

public static void main(String args[])

{

classtri c = new classtri();

c.upper();

7. (i) Describe the different levels of access protection available in Java.

Java addresses four categories of visibility for class members:

 Subclasses in the same package

 Non-subclasses in the same package

 Subclasses in different packages

 Classes that are neither in the same package nor subclasses

 Anything declared public can be accessed from anywhere

 Anything declared private cannot be seen outside of its class.

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 27 -

 When a member does not have an explicit access specification, it is visible to subclasses

as well as to other classes in the same package. This is the default access.

(ii) Name and explain the uses of various bit–wise operators in Java.

Operator Name Example Result Description

a & b and 3 & 5 1 1 if both bits are 1.

a | b or 3 | 5 7 1 if either bit is 1.

a ^ b xor 3 ^ 5 6 1 if both bits are different.

~a not ~3 -4 Inverts the bits.

n << p
left

shift
3 <<< 2 12

Shifts the bits of n left p positions. Zero bits are shifted

into the low-order positions.

8. (i) Explain the operators in Java for arithmetic and logical shift operations. Show using

 a Java program how multiplication by 2 can be implemented using a logical shift

 operation (DEC 2015)

Operators
Operators are special symbols that perform specific operations on one, two, or three
operands, and then return a result.

With higher precedence are evaluated before operators with relatively lower precedence.
Operators on the same line have equal precedence. When operators of equal precedence
appear in the same expression, a rule must govern which is evaluated first.

Assignment operators are evaluated right to left.
Operator Precedence
Operators Precedence
postfix expr++ expr--

unary ++expr --expr +expr -
expr ~ !

multiplicative * / %

additive + -

Control Statements

The statements inside your source files are generally executed from top to bottom, in the order

that they appear. Control flow statements, however, break up the flow of execution by

employing decision making, looping, and branching, enabling your program to conditionally

execute particular blocks of code. This section describes the decision-making statements (if-

then, if-then-else, switch), the looping statements (for, while, do-while), and the branching

statements (break, continue, return) supported by the Java programming language.

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 28 -

The if-then and if-then-else Statements

The if-then Statement
The if-then statement is the most basic of all the control flow statements. It tells your program

to execute a certain section of code only if a particular test evaluates to true. For example, the

Bicycle class could allow the brakes to decrease the bicycle's speed only if the bicycle is already

in motion. One possible implementation of the applyBrakes method could be as follows:

void applyBrakes() {

// the "if" clause: bicycle must be moving if

(isMoving){

// the "then" clause: decrease current speed

currentSpeed--;
}

}

If this test evaluates to false (meaning that the bicycle is not in motion), control jumps to the
end of the if-then statement.

In addition, the opening and closing braces are optional, provided that the "then" clause

contains only one statement:

void applyBrakes() {

// same as above, but without braces if

(isMoving)
currentSpeed--;

}

Deciding when to omit the braces is a matter of personal taste. Omitting them can make the

code more brittle. If a second statement is later added to the "then" clause, a common mistake

would be forgetting to add the newly required braces. The compiler cannot catch this sort of

error; you'll just get the wrong results.

The if-then-else Statement

The if-then-else statement provides a secondary path of execution when an "if" clause evaluates

to false. You could use an if-then-else statement in the applyBrakes method to take some action

if the brakes are applied when the bicycle is not in motion. In this case, the action is to simply

print an error message stating that the bicycle has already stopped.

void applyBrakes() { if

(isMoving) {

currentSpeed--; }
else {

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 29 -

System.err.println("The bicycle has already stopped!");

}
}

The following program, IfElseDemo, assigns a grade based on the value of a test score: an A

for a score of 90% or above, a B for a score of 80% or above, and so on.

class IfElseDemo {
public static void main(String[] args) {

int testscore = 76; char

grade;

if (testscore >= 90) { grade
= 'A';

} else if (testscore >= 80) { grade =

'B';

} else if (testscore >= 70) { grade =

'C';

} else if (testscore >= 60) { grade =
'D';

} else {
grade = 'F';

}
System.out.println("Grade = " + grade);

}
}

The output from the program is:

Grade = C

You may have noticed that the value of testscore can satisfy more than one expression in the

compound statement: 76 >= 70 and 76 >= 60. However, once a condition is satisfied, the

appropriate statements are executed (grade = 'C';) and the remaining conditions are not

evaluated.

The switch Statement

Unlike if-then and if-then-else statements, the switch statement can have a number of possible

execution paths. A switch works with the byte, short, char, and int primitive data types. It also

works with enumerated types (discussed in Enum Types), the String class, and a few special

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/IfElseDemo.java
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 30 -

classes that wrap certain primitive types: Character, Byte, Short, and Integer (discussed in

Numbers and Strings).

The following code example, SwitchDemo, declares an int named month whose value

represents a month. The code displays the name of the month, based on the value of month,

using the switch statement.

public class SwitchDemo {

public static void main(String[] args) {

int month = 8; String
monthString; switch
(month) {

case 1: monthString = "January"; break;
case 2: monthString = "February"; break;
case 3: monthString = "March";

break;
case 4: monthString = "April"; break;
case 5: monthString = "May";

break;
case 6: monthString = "June"; break;
case 7: monthString = "July"; break;
case 8: monthString = "August"; break;
case 9: monthString = "September"; break;
case 10: monthString = "October";

break;
case 11: monthString = "November";

break;
case 12: monthString = "December";

break;
default: monthString = "Invalid month";

break;
}

System.out.println(monthString);
}

}

In this case, August is printed to standard output.

The while and do-while Statements

The while statement continually executes a block of statements while a particular

condition is true. Its syntax can be expressed as:

while (expression) {

statement(s)

https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Byte.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Short.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/tutorial/java/data/index.html
https://docs.oracle.com/javase/tutorial/java/data/index.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/SwitchDemo.java

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 31 -

}

The while statement evaluates expression, which must return a boolean value. If the expression

evaluates to true, the while statement executes the statement(s) in the while block. Thewhile

statement continues testing the expression and executing its block until the expression evaluates

to false. Using

the while statement to print the values from 1 through 10 can be

accomplished as in the following WhileDemo program:

class WhileDemo {

public static void main(String[] args){ int count
= 1;

while (count < 11) { System.out.println("Count is: " +

count); count++;

}
}

}

You can implement an infinite loop using the while statement as follows:

while (true){
// your code goes here

}

The Java programming language also provides a do-while statement, which can be expressed as

follows:

do {
statement(s)

} while (expression);

The difference between do-while and while is that do-while evaluates its expression at the

bottom of the loop instead of the top. Therefore, the statements within the do block are always

executed at least once, as shown in the following DoWhileDemo program:

class DoWhileDemo {

public static void main(String[] args){

int count = 1;

do {

System.out.println("Count is: " + count); count++;
} while (count < 11);

}

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/WhileDemo.java
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/DoWhileDemo.java

MC5304/ Programming With JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 32 -

}

The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers often

refer to it as the "for loop" because of the way in which it repeatedly loops until a particular

condition is satisfied. The general form of the for statement can be expressed as follows:

for (initialization; termination;

increment) {
statement(s)

}

When using this version of the for statement, keep in mind that:

 The initialization expression initializes the loop; it's executed once, as the loop begins.
 When the termination expression evaluates to false, the loop terminates.

 The increment expression is invoked after each iteration through the loop; it is perfectly

acceptable for this expression to increment or decrement a value.

The following program, ForDemo, uses the general form of the for statement to print the

numbers 1 through 10 to standard output:

class ForDemo {

public static void main(String[] args){ for(int
i=1; i<11; i++){

System.out.println("Count is: " + i);

}
}

}

The output of this program is:

Count is: 1

Count is: 2

Count is: 3
 Count is: 4

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/ForDemo.java

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 33 -

 Count is: 5

 Count is: 6
 Count is: 7

 Count is: 8
 Count is: 9

 Count is: 10

(ii) Demonstrate the if-else ladder using a sample Java code (DEC 2015)

Syntax : if-else-if Ladder

The if-then-else Statement

The if-then-else statement provides a secondary path of execution when an "if" clause

evaluates to false. You could use an if-then-else statement in the applyBrakes method to take

some action if the brakes are applied when the bicycle is not in motion. In this case, the

action is to simply print an error message stating that the bicycle has already stopped.

void applyBrakes() {

if (isMoving) {

currentSpeed--;
} else {

System.err.println("The bicycle has already stopped!");
}

}

The following program, IfElseDemo, assigns a grade based on the value of a test score: an A

for a score of 90% or above, a B for a score of 80% or above, and so on.

class IfElseDemo {
public static void main(String[] args) {

int testscore = 76;

char grade;

if (testscore >= 90) {

grade = 'A';

} else if (testscore >= 80) { grade

= 'B';

} else if (testscore >= 70) { grade

= 'C';

} else if (testscore >= 60) { grade
= 'D';

} else {

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/IfElseDemo.java

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 34 -

grade = 'F';
}
System.out.println("Grade = " + grade);

}
}

The output from the program is:

Grade = C

You may have noticed that the value of testscore can satisfy more than one expression in the

compound statement: 76 >= 70 and 76 >= 60. However, once a condition is satisfied, the

appropriate statements are executed (grade = 'C';) and the remaining conditions are not

evaluated.

9. (i) Explain how Java differs from C and C++.

How Java Differs from C

 Major Difference – Java is a Object_oriented language.

 Java doesnot include C unique stmts, keywords sizeof, typeof

 Java doesnot contain datatypes struct & union

 Java doesnot define the type modifier keywords auto, extern, register, signed and

unsigned.

How Java differs from C++

 Java is a true Object – Oriented Language while c++ is c with object-oriented

extension.

 Java does not support Operator overloading, template classes

 Java does not support multiple inheritance. This is implemented in java called as

“Interface”

 Java does not use pointers , global variables.

 Java has replaced the destructor function with a finalize() function

 No header files in java

(ii) Explain the various Data types of Java.

Java defines eight simple (or elemental) types of data: byte, short, int, long, char, float,

double, and boolean. These can be put in four groups:

 Integers

 Floating-point numbers

 Characters

10. Write a Java program for constructor overloading.

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 35 -

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

double test(double a) {

System.out.println("double a: " + a);

return a*a;

}

}

class Overload {

public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

result = ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

11. Create a package called "LIBRARY", which contains one class "BOOK" to

maintain all the book information. In another program, import the package and create

two classes "STAFF" and "STUDENT" from the super class "BOOK". In the main()

method, create array of objects for the classes book and call the method in book class to

read the details of the available books and display the menu as 1. staff 2. student. If the

selected choice is 1, call the read method in staff class to read the details of the staff and

the books they want to take (Check whether the given book ids are available in the book

list). If the selected choice is 2, call the read method in student dais to read details of the

student and the books they want to take (Check whether the given book ids are

available in the book list). Before issuing each book, check that the book is available is

in. the library or not. After reading the values, use the corresponding display methods

to display the details of the staff or student with the books they have taken (DEC2014)

public class Book

{

 private String isbn;

 private String title;

 private String author;

 public Book(String isbnIn, String titleIn, String authorIn)

 {

 isbn = isbnIn;

 title = titleIn;

 author = authorIn;

 }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 36 -

 public String getISBN()

 {

 return isbn;

 }

 public String getTitle()

 {

 return title;

 }

 public String getAuthor()

 {

 return author;

 }

public String toString()

 {

 return "(" + isbn + " , " + author + ", " + title + ")\n";

 }

 public boolean equals (Object objIn)

 {

Book bookIn = (Book) objIn;

 return isbn.equals(bookIn.isbn);

 }

 public int hashCode()

 {

 return isbn.hashCode();

 }

}

import java.util.*;

public class Library

{

 Map <String, Book> books; // declare map collection

 // create empty map

 public Library()

 {

 books = new HashMap<String, Book>();

 }

 // add the given book into the collection

 public boolean addBook(Book bookIn)

 {

 String keyIn = bookIn.getISBN(); // isbn will be key of map

 if (books.containsKey(keyIn)) // check if isbn already in use

 {

 return false; // indicate error

 }

 else // ok to add this book

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 37 -

 {

 books.put(keyIn, bookIn); // add key and book pair into map

 return true;

 }

 }

 // remove the book with the given isbn

 public boolean removeBook(String isbnIn)

 {

 if (books.remove(isbnIn)!= null) // check if item was removed

 {

 return true;

 }

 else // when item is not removed

 {

 return false;

 }

 }

 // return the number of books in the collection

 public int getTotalNumberOfBooks()

 {

 return books.size();

 }

 // return the book with the given isbn or null if no such book

 public Book getBook (String isbnIn)

 {

 return books.get(isbnIn);

 }

 // return the set of books in the collection

 public Set<Book> getAllBooks ()

 {

 Set<Book> bookSet = new HashSet<Book>(); // to store the set of books

 Set<String> theKeys = books.keySet(); // get the set of keys

 // iterate through the keys and put each value in the bookSet

 for (String isbn : theKeys)

 {

 Book theBook = books.get(isbn);

 bookSet.add(theBook);

 }

 return bookSet; // return the set of books

 }

 }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 38 -

12. Explain in detail about Java classes and Java packages(DEC 2015)

Class Definitions: A java program may contain multiple class definitions.
classes are the primary and essential elements of a java program
Main Method Class:- Since every java standalone program requires a main method as its

starting point, this class is the essential part of a java program.

/*
* First Java program, which says "Hello, world!"

*/

public class Hello { // Save as "Hello.java"

public static void main(String[] args) {

System.out.println("Hello, world!"); // print message

}

}

 Packages are containers for classes that are used to keep the class name space

separately.

 A unique name is to be used for each class to avoid name collisions.

Defining a package:

 To create a package, include a package command as the first statement in java source

file.

 The package statement defines a name space in which classes are stored.

Syntax: package Mypackage; Here Mypackage is the name of the package.

 We can have a hierarchy of packages.

Syntax:package pkg1[.pkg2][.pkg3];

Inside pack1 folder:

package pack1;

public class student

{

 String name;

 String course;

 int tot, avg;

 public void initialise(String s1,String c)

 {

 name=s1;

 course=c;

 }

 public void calc(int m1,int m2,int m3)

 {

 tot=m1+m2+m3;

 avg=tot/3;

 }

 public void display()

 {

 System.out.println("\nStudent name : " +name);

 System.out.println("\nCourse : " +course);

 System.out.println("\nTotal : " +tot);

 System.out.println("\nAverage : " +avg);

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 39 -

 }

}

MainClass(outside pack1)

import java.io.*;

import pack1.*;

class packeg extends student

{

 public static void main(String args[])throws IOException

 {

 int i;

 BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

 String s,s1,s2;

 int m1,m2,m3;

 int no;

 System.out.println("\nEnter the number of students :");

 s=br.readLine();

 no=Integer.parseInt(s);

 for(i=1;i<=no;i++)

 {

 System.out.println("\nEnter Name:");

 s1=br.readLine();

 System.out.println("\nEnter Course :");

 s2=br.readLine();

 packeg p=new packeg();

 p.initialise(s1,s2);

 System.out.println("\nEnter the marks :");

 m1=Integer.parseInt(br.readLine());

 m2=Integer.parseInt(br.readLine());

 m3=Integer.parseInt(br.readLine());

 p.calc(m1,m2,m3);

 p.display();

 }

 }

13. Discuss about the expressions, operators and various control structures in Java.

(DEC 2015)

Operators

Operators are special symbols that perform specific operations on one, two, or three
operands, and then return a result.

with higher precedence are evaluated before operators with relatively lower
precedence. Operators on the same line have equal precedence. When operators of
equal precedence appear in the same expression, a rule must govern which is evaluated
first.

assignment operators are evaluated right to left.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 40 -

Operator Precedence
Operators Precedence
postfix expr++ expr--

unary ++expr --expr +expr -
expr ~ !

multiplicative * / %

additive + -

Control Statements

The statements inside your source files are generally executed from top to bottom, in the

order that they appear. Control flow statements, however, break up the flow of execution by

employing decision making, looping, and branching, enabling your program to

conditionally execute particular blocks of code. This section describes the decision-making

statements (if-then, if-then-else, switch), the looping statements (for, while, do-while), and

the branching statements (break, continue, return) supported by the Java programming

language.

The if-then and if-then-else Statements

The if-then Statement

The if-then statement is the most basic of all the control flow statements. It tells your

program to execute a certain section of code only if a particular test evaluates to true. For

example, the Bicycle class could allow the brakes to decrease the bicycle's speed only if the

bicycle is already in motion. One possible implementation of the applyBrakes method could

be as follows:

void applyBrakes() {

// the "if" clause: bicycle must be moving if
(isMoving){

// the "then" clause: decrease current speed
currentSpeed--;

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 41 -

}
}

If this test evaluates to false (meaning that the bicycle is not in motion), control jumps to the
end of the if-then statement.

In addition, the opening and closing braces are optional, provided that the "then" clause

contains only one statement:

void applyBrakes() {

// same as above, but without braces if

(isMoving)
currentSpeed--;

}

Deciding when to omit the braces is a matter of personal taste. Omitting them can make the

code more brittle. If a second statement is later added to the "then" clause, a common

mistake would be forgetting to add the newly required braces. The compiler cannot catch

this sort of error; you'll just get the wrong results.

The if-then-else Statement

The if-then-else statement provides a secondary path of execution when an "if" clause

evaluates

to false. You could use an if-then-else statement in the applyBrakes method to take some

action if the brakes are applied when the bicycle is not in motion. In this case, the action is to

simply print an error message stating that the bicycle has already stopped.

void applyBrakes() {

if (isMoving) {

currentSpeed--;

} else {
System.err.println("The bicycle has already stopped!");

}
}

The following program, IfElseDemo, assigns a grade based on the value of a test score: an A

for a score of 90% or above, a B for a score of 80% or above, and so on.

class IfElseDemo {
public static void main(String[] args) {

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/IfElseDemo.java

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 42 -

int testscore = 76;

char grade;

if (testscore >= 90) {
grade = 'A';

} else if (testscore >= 80) { grade

= 'B';

} else if (testscore >= 70) { grade

= 'C';

} else if (testscore >= 60) { grade
= 'D';

} else {
grade = 'F';

}
System.out.println("Grade = " + grade);

}
}

The output from the program is:

Grade = C

You may have noticed that the value of testscore can satisfy more than one expression in the

compound statement: 76 >= 70 and 76 >= 60. However, once a condition is satisfied, the

appropriate statements are executed (grade = 'C';) and the remaining conditions are not

evaluated.

The switch Statement

Unlike if-then and if-then-else statements, the switch statement can have a number of

possible execution paths. A switch works with the byte, short, char, and int primitive data

types. It also works with enumerated types (discussed in Enum Types), the String class,

and a few special classes that wrap certain primitive types: Character, Byte, Short, and

Integer (discussed in Numbers and Strings).

The following code example, SwitchDemo, declares an int named month whose value

represents a month. The code displays the name of the month, based on the value of month,
using the switch statement.

public class SwitchDemo {

public static void main(String[] args) {

https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Byte.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Short.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/tutorial/java/data/index.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/SwitchDemo.java

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 43 -

int month = 8;
String monthString;
switch (month) {

case 1: monthString = "January";

break;
case 2: monthString = "February";

break;
case 3: monthString = "March";

break;
case 4: monthString = "April";

break;
case 5: monthString = "May";

break;
case 6: monthString = "June";

break;
case 7: monthString = "July";

break;
case 8: monthString = "August";

break;
case 9: monthString = "September";

break;
case 10: monthString = "October";

break;
case 11: monthString = "November";

break;
case 12: monthString = "December";

break;
default: monthString = "Invalid month";

break;
}

System.out.println(monthString);
}

}

In this case, August is printed to standard output.

The while and do-while Statements

The while statement continually executes a block of statements while a particular

ondition is true. Its syntax can be expressed as:

while (expression) {

statement(s)
}

The while statement evaluates expression, which must return a boolean value. If the

expression evaluates to true, the while statement executes the statement(s) in the while block.

Thewhile statement continues testing the expression and executing its block until the

expression evaluates to false. Using

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 44 -

the while statement to print the values from 1 through 10 can be
accomplished as in the following WhileDemo program:

class WhileDemo {

public static void main(String[] args){ int

count = 1;

while (count < 11) { System.out.println("Count is: "

+ count); count++;

}
}

}

You can implement an infinite loop using the while statement as follows:

while (true){
// your code goes here

}

The Java programming language also provides a do-while statement, which can be expressed

as follows:

do {
statement(s)

} while (expression);

The difference between do-while and while is that do-while evaluates its expression at the

bottom of the loop instead of the top. Therefore, the statements within the do block are

always executed at least once, as shown in the following DoWhileDemo program:

class DoWhileDemo {

public static void main(String[] args){

int count = 1;

do {

System.out.println("Count is: " + count);

count++;
} while (count < 11);

}
}

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/WhileDemo.java
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/DoWhileDemo.java

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 45 -

The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers

often refer to it as the "for loop" because of the way in which it repeatedly loops until a

particular condition is satisfied. The general form of the for statement can be expressed as

follows:

for (initialization; termination;

increment) {
statement(s)

}

When using this version of the for statement, keep in mind that:

 The initialization expression initializes the loop; it's executed once, as the loop

begins.
 When the termination expression evaluates to false, the loop terminates.

 The increment expression is invoked after each iteration through the loop; it is

perfectly acceptable for this expression to increment or decrement a value.

The following program, ForDemo, uses the general form of the for statement to print the

numbers 1 through 10 to standard output:

class ForDemo {

public static void main(String[] args){ for(int
i=1; i<11; i++){

System.out.println("Count is: " + i);

}
}

}

The output of this program is:

Count is: 1

Count is: 2

Count is: 3
Count is: 4

Count is: 5

Count is: 6
Count is: 7

Count is: 8
Count is: 9

Count is: 10

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/examples/ForDemo.java

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 46 -

14. i) Explain Any Two Control Structure Supported By Java with Suitable Example

 (DEC 2016)

A programming language uses control statements to cause the flow of execution to advance

and branch based on changes to the state of a program. Java’s program control statements can

be put into the following categories:

Selection

iteration

jump

 Selection statements

Selection statements allows program to choose different paths of execution based upon the

outcome of an expression or the state of a variable.

Iteration statements

Iteration statements enable program execution to repeat one or more statements (that is,

iteration statements form loops).

 Jump statements

 Jump statements allows program to execute in a nonlinear fashion. All of Java’s

control statements are examined here.

Selection Statements

1. if Statement

The if statement is Java’s conditional branch statement. It can be used to route

program execution through two different paths. Here is the general form of the if statement:

if (condition)

{ statement1; }

else { statement2; }

 Here, each statement may be a single statement or a compound statement enclosed in curly

braces (that is, a block). The condition is any expression that returns a boolean value. The

else clause is optional. The if statement works like this:

 If the condition is true, then statement1 is executed. Otherwise, statement2 (if it exists) is

executed.

Solution:

Example

class Man { public static void main(String args[]){

int age= 49;

if(age>=35) System.out.println("Old");

else System.out.println("Young");

} }

Output: Old

2. Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very

common in programming. When you nest ifs, the main thing to remember is that an else

statement always refers to the nearest if statement that is within the same block as the else

and that is not already associated with an else.

3. The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the

if-else-if ladder. It looks like this:

if (condition1)

 statement1;

else if (condition2)

statement2; ……………………….. ………………………..

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 47 -

else statement3;

The if statements are executed from the top to down. As soon as one of the conditions

controlling the if is true, the statement associated with that if is executed, and the rest of the

ladder is bypassed. If none of the conditions is true, then the final else statement will be

executed.

Example

class Result { public static void main(String args[])

{

int mark= 76;

if(mark>=60) System.out.println("1st Division");

else if(mark>=50 && mark<60) System.out.println("2nd Division");

else System.out.println("3rd Division"); } }

Output: 1st Division

Switch Statements

The switch statement is Java’s multi way branch statement. It provides an easy way to

dispatch execution to different parts of your code based on the value of an expression. As

such, it often provides a better alternative than a large series of if-else-if statements. Here is

the general form of a switch statement:

switch (expression)

{

case value1: // statement sequence break

; case value2: // statement sequence break;

... case valueN:

// statement sequence break; default: // default statement sequence

}

Solution:

class SampleSwitch

{

public static void main(String args[])

 {

for(int i=0; i<6; i++)

switch(i)

{

case 0: System.out.println("i is zero.");

break;

case 1: System.out.println("i is one.");

break;

case 2: System.out.println("i is two.");

break;

case 3: System.out.println("i is three.");

break;

default: System.out.println("i is greater than 3."); } } }

Output:

i is zero. i is one. i is two. i is three.

i is greater than 3. i is greater than 3.

14. ii) Declare An Interface Called Sports With Appropritate Methods. Design And

Implements Football And Volleyball Interface Which Extends Sports Interface. Write

Java Classes Which Implements Football And Volleyball Interface.(DEC 2016)

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 48 -

Interface sports{

 Float Sport_wt=10.0f;

}

Interface football

{

Void putplayer();}

Interface volleyball(){

Void putplayer1();

}

Class main1{

Int f_player,v_player;

Void getplayer(int p1){

F_player=p1;

}

Void getplayer2(int p2){

V_player=p2

}}

Class main2 extends main1 im plements sports,football,volletball{

Public void putplayer(){

Getplayer();

System.out.println(“team football player is:”+f_player);

}

Public void putplayer(){

Getplayer2();

System.out.println(“team football player is:”+v_player);

}}

Class main3{

Public static void main(String args[]){

Main2 a=new main2();

a.geplayer1(4);

a.getplayer2(10);

a.putplayer1();

a.putplayer();}}

15. Explain Exception Handling in Java with appropite Examples(DEC 2016)

Error occurred in a program can be of two types: syntax error or logical error. An

exception is an abnormal condition that arises in a code sequence at run time. In other words,

an exception is a run-time error.

 A Java exception is an object that describes an exceptional (that is, error) condition that has

occurred in a piece of code. Exception Handling is a mechanism by which exception

occurred in a program is handled.

 Java exception handling is managed via five keywords:

Try

 Catch

 Thro

throws

finally.

Keyword and their meaning

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 49 -

catch block If an exception occurs within the try block, it is throws an exception to

the catch block which handle it in some rational manner.

throw To manually throw an exception, use the keyword throw.

throwsA throws clause lists the types of exceptions that a method might throw

finallyAny code that absolutely must be executed before a method returns is put in a

finally block.

Execution Flow of the try, catch and finally block

The general form of an exception-handling block is:

try { // block of code to monitor for errors }

catch (ExceptionType1 exOb)

{ // exception handler for ExceptionType1 }

catch (ExceptionType2 exOb)

{ // exception handler for ExceptionType2 } ……….. ………..

finally

{ // block of code to be executed before try block ends }

Exception Types

 All exception types are subclasses of the built-in class Throwable. Thus, Throwable

is at the top of the exception class hierarchy.

 The Throwable class has two subclasses Error and Exception. Error and Exception classes

are used for handling errors in java.

Object

Throwable

Exception

AWT Error

Error

SQL Exceptionn

Thread

Class not Found

Runtime Exception

Number Format

Using try and catch

The following program includes a try block and a catch clause which processes the

ArithmeticException generated by the division-by-zero error.

Example:

class Ex {

public static void main(String args[])

{

int x, y; try { x = 0; y= 1/ x;

System.out.println("This will not be printed."); }}

catch (ArithmeticException e)

 {

System.out.println("Division by zero."); }

System.out.println("After catch statement."); }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 50 -

UNIT II

1. What are the categories of Annotations in JAVA? Explain in detail.

 Java Annotations

Java annotation is used to provide the extra or supplement information about the program.

Annotations in Java are utilized to give supplement data about a program.

 Java Annotations begin with ‘@’.

 Java Annotations don’t change the activity of an ordered program.

 Annotations in Java help to relate metadata (data) to the program components i.e.

 case factors, constructors, strategies, classes, and so on.

 Annotations in Java are not unadulterated remarks as they can change the way a

 program is dealt with by compiler. See beneath code for instance.

Java Annotation Example –

1. class Base

2. {

3. public void display()

4. {

5. System.out.println("Base display()");

6. }

7. }

8. class Derived extends Base

9. {

10. @Override

11. public void display(int x)

12. {

13. System.out.println("Derived display(int)");

14. }

15. public static void main(String args[])

16. {

17. Derived obj = new Derived();

18. obj.display();

19. }

20. }

a. Categories of Java Annotations

There are 3 types of Annotations in Java.

Types of Annotations in Java

https://data-flair.training/blogs/constructor-in-java/
https://data-flair.training/blogs/class-and-object-in-java/

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 51 -

i. Marker Java Annotations

The main design is to mark an annotation in Java. These Java annotations contain no

individuals and don’t comprise any information. Along these lines, its quality as a comment

is adequate. Since, marker interface contains no individuals, just deciding if it is available or

missing is adequate. @Override is a case of Marker Annotation.

Example: – @TestAnnotation()

Read about Loops in Java – Types and Examples of Looping in Java

ii. Single Value Java Annotations

These annotations contain just a single part and permit a shorthand type of determining the

estimation of the part. We just need to indicate the incentive for that part when the comment

is connected and don’t have to determine the name of the part. However, to utilize this

shorthand, the name of the part should value.

iii. Full Java Annotations

They contain multiple values, pairs, data members, etc.

Example:- @TestAnnotation(owner=”Shadow”, value=”Class Flair”)

b. Predefined/ Standard Java Annotations

There are seven built-in annotations in Java.

 The four imported from java.lang.annotation

@Retention, @Documented, @Target, and @Inherited

 The three in java.lang

@Deprecated, @Override, and @SuppressWarnings

Let’s Discuss Java Number – Number Methods with Syntax and Examples

Java Annotations

i. @Deprecated Annotation

 @ Deprecated Java Annotation used to indicate that a declaration has become old

 and has been replaced by a newer one, thus it is a marker annotation

 The Javadoc @deprecated tag ought to utilize when a component has been

 deployed.

 A @deprecated tag is for documentation and @Deprecated annotation is for

 runtime reflection.

 A @deprecated tag has a higher need than @Deprecated annotation when both

 areas one utilized.

https://data-flair.training/blogs/loops-in-java/
https://data-flair.training/blogs/java-number/

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 52 -

1. public class DeprecatedTest

2. {

3. @Deprecated

4. public void Display()

5. {

6. System.out.println("Deprecatedtest display()");

7. }

8. public static void main(String args[])

9. {

10. DeprecatedTest d1 = new DeprecatedTest();

11. d1.Display();

12. }

13. }

Read About Java Regular Expression (Java Regex) with Examples

ii. @Override Annotation

@Override Java Annotations are a marker annotation that can utilize just on strategies. A

technique clarified with @Override must supersede a strategy from a superclass. In the event

that it doesn’t, an order time error will come about (see this for instance). It is utilized to

guarantee that a superclass technique is really superseded, and not just over-loaded.

1. class Base

2. {

3. public void Display()

4. {

5. System.out.println("Base display()");

6. }

7. public static void main(String args[])

8. {

9. Base t1 = new Derived();

10. t1.Display();

11. }

12. }

13. class Derived extends Base

14. {

15. @Override

16. public void Display()

17. {

18. System.out.println("Derived display()");

19. }

20. }

Output –

Derived displays

https://data-flair.training/blogs/java-regular-expression/

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 53 -

iii. @SuppressWarnings Annotation

These Java Annotations are utilizing to educate the compiler to smother indicated compiler

notices. The warnings are indicated by the name, in string structure. This sort of annotation

can connect to a statement.

Java warnings notices under two classifications. They are depreciation and unchecked. Any

unchecked cautioning is created when an inheritance code interfaces with a code that

utilization generics.

1. class DeprecatedTest

2. {

3. @Deprecated

4. public void Display()

5. {

6. System.out.println("Deprecatedtest display()");

7. }

8. }

9. public class SuppressWarningTest

10. {

11. @SuppressWarnings({"checked", "deprecation"})

12. public static void main(String args[])

13. {

14. DeprecatedTest d1 = new DeprecatedTest();

15. d1.Display();

16. }

17. }

Output-

Deprecatedtest display()

iv. @Documented Annotations

It is a marker interface that tells an apparatus that an explanation is to archive. Java

Annotations are excluded by Javadoc remarks. Utilization of @Documented comment in the

code empowers devices like Javadoc to process it and incorporate the explanation compose

data in the produced archive.

v. @Target Annotations

It is intended to utilize just as an explanation for another annotation. @Target takes one

argument, which must be consistent with the ElementType count. This annotation determines

the kind of assertions to which Java annotation can connect. The constants are appeared

beneath alongside the sort of affirmation to which they relate.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 54 -

Table 1 – @ Target Java Annotations

Target Constant Annotations Can be Applied To

ANNOTATION_TYPE Another annotation

CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, Interface, or enumeration

We can indicate at least one of these qualities in a @Targetannotation. To determine different

esteems, we should indicate them inside a props delimited rundown. For instance, to indicate

that an annotation applies just to fields and neighborhood factors, you can utilize this

@Target comment: @Target({ElementType.FIELD, ElementType.LOCAL_VARIABLE})

@Retention Annotation It figures out where and to what extent the comment is retent. The 3

esteems that the @Retention explanation can have:

 SOURCE: Annotations will be held at the source level and disregarded by the

 compiler.

 CLASS: Annotations will be held at order time and overlooked by the JVM.

 RUNTIME: These will be held at runtime.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 55 -

vi. @Inherited Annotations

@Inherited Java annotations are marker annotation that can utilize just on annotation

affirmation. It influences just explanations that will utilize for class presentations. @Inherited

makes the comment for a superclass acquire by a subclass. In this way, when a demand for a

particular comment is made to the subclass, if that comment is absent in the subclass, at that

point its superclass is checked. In the event that that comment is available in the superclass,

and in the event that it is clarified with @Inherited, at that point that comment will return.

vii. User-defined/ Custom Annotations

Client characterized Java explanations can utilize to clarify program components, i.e. factors,

constructors, techniques, and so forth. These explanations can connect just before the

statement of a component (constructor, strategy, classes, and so forth).

Syntax –

1. [Access Specifier] @interface<AnnotationName>

2. {

3. DataType <Method Name>() [default value];

4. }

 AnnotationName is an identifier.

 Parameter ought not relate to strategy assertions and tosses provision ought not

 utilize with technique revelation.

 Parameters won’t have an invalid esteem yet can have a default esteem.

 default esteem is discretionary.

 Return kind of strategy ought either crude, enum, string, class name or exhibit of

 crude, enum, string or class name write.

Let’s Look at Java Generics Tutorial- Class, Functions of Generics in Java

Example –

1. import java.lang.annotation.Documented;

2. import java.lang.annotation.Retention;

3. import java.lang.annotation.RetentionPolicy;

4. @Documented

5. @Retention(RetentionPolicy.RUNTIME)

6. @ interface TestAnnotation

7. {

8. String Developer() default "Rahul";

9. String Expirydate();

10. }

11. public class Test

12. {

13. @TestAnnotation(Developer="data", Expirydate="01-10-2020")

14. void fun1()

15. {

16. System.out.println("Test method 1");

https://data-flair.training/blogs/java-generics/

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 56 -

17. }

18.

19. @TestAnnotation(Developer="fair", Expirydate="01-10-2020")

20. void fun2()

21. {

22. System.out.println("Test method 2");

23. }

24.

25. public static void main(String args[])

26. {

27. System.out.println("Hello");

28. }

29. }

Output –

Hello

2. Write down the hierarchy of Collection framework.

Class Hierarchy Of Collection Framework :

All classes and interfaces related to Collection Framework are placed

in java.util package. java.util.Collection class is at the top of class hierarchy of Collection

Framework. Below diagram shows the class hierarchy of collection framework.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 57 -

The entire collection framework is divided into four interfaces.

1) List —> It handles sequential list of objects. ArrayList, Vector and LinkedList classes

implement this interface.

2) Queue —> It handles special list of objects in which elements are removed only from the

head. LinkedList and PriorityQueue classes implement this interface.

3) Set —> It handles list of objects which must contain unique element. This interface is

implemented by HashSetand LinkedHashSet classes and extended by SortedSet interface

which in turn, is implemented by TreeSet.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 58 -

4) Map —> This is the one interface in Collection Framework which is not inherited from

Collection interface. It handles group of objects as Key/Value pairs. It is implemented

by HashMap and HashTable classes and extended by SortedMap interface which in turn is

implemented by TreeMap.

Three of above interfaces (List, Queue and Set) inherit from Collection interface. Although,

Map is included in collection framework it does not inherit from Collection interface.

3. What is the need of collection framework? Give an example. Write down the advantages.

Since all the data operations(sorting/adding/deleting) are possible with Arrays and moreover

array is suitable for memory consumption and performance is also better compared with

Collections.

 Arrays are not resizable.

 Java Collections Framework provides lots of different useful data types, such as

 linked lists (allows insertion anywhere in constant time), resizeable array lists

 (like Vector but cooler), red-black trees, hash-based maps (like Hashtable but

 cooler).

 Java Collections Framework provides abstractions, so you can refer to a list as

 a List, whether backed by an array list or a linked list; and you can refer to a

 map/dictionary as a Map, whether backed by a red-black tree or a hashtable.

In other words, Java Collections Framework allows you to use the right data structure,

because one size does not fit all.

 Java's collection classes provides a higher level interface than arrays.

 Arrays have a fixed size. Collections (see ArrayList) have a flexible size.

 Efficiently implementing a complicated data structures (e.g., hash tables) on top of

 raw arrays is a demanding task. The standard HashMap gives you that for free.

 There are different implementation you can choose from for the same set of

 services: ArrayList vs. LinkedList, HashMap vs. TreeMap, synchronized, etc.

 Finally, arrays allow covariance: setting an element of an array is not guaranteed to

 succeed due to typing errors that are detectable only at run time. Generics prevent

 this problem in arrays.

Take a look at this fragment that illustrates the covariance problem:

 String[] strings = new String[10];

 Object[] objects = strings;

 objects[0] = new Date(); // <- ArrayStoreException: java.util.Date

collections offer Lists which are somewhat similar to arrays, but they offer many more things

that are not. I'll assume you were just talking about List (and even Set) and leave Map out of

it.

Yes, it is possible to get the same functionality as List and Set with an array, however there is

a lot of work involved. The whole point of a library is that users do not have to "roll their

own" implementations of common things.

Once you have a single implementation that everyone uses it is easier to justify spending

resources optimizing it as well. That means when the standard collections are sped up or have

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 59 -

their memory footprint reduced that all applications using them get the improvements for

free.

A single interface for each thing also simplifies every developers learning curve - there are

not umpteen different ways of doing the same thing.

If you wanted to have an array that grows over time you would probably not put the growth

code all over your classes, but would instead write a single utility method to do that. Same for

deletion and insertion etc...

Also, arrays are not well suited to insertion/deletion, especially when you expect that the

.length member is supposed to reflect the actual number of contents, so you would spend a

huge amount of time growing and shrinking the array. Arrays are also not well suited for Sets

as you would have to iterate over the entire array each time you wanted to do an insertion to

check for duplicates. That would kill any perceived efficiency.

4. Write in detail about Array list. Write the code to create generic ArrayList.

Java ArrayList class

Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList

class and implements List interface.

The important points about Java ArrayList class are:

o Java ArrayList class can contain duplicate elements.

o Java ArrayList class maintains insertion order.

o Java ArrayList class is non synchronized.

o Java ArrayList allows random access because array works at the index basis.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 60 -

o In Java ArrayList class, manipulation is slow because a lot of shifting needs to be

occurred if any element is removed from the array list.

Hierarchy of ArrayList class

As shown in above diagram, Java ArrayList class extends AbstractList class which

implements List interface. The List interface extends Collection and Iterable interfaces in

hierarchical order.

ArrayList class declaration

Let's see the declaration for java.util.ArrayList class.

1. public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cl

oneable, Serializable

Constructors of Java ArrayList

Constructor Description

ArrayList() It is used to build an empty array list.

ArrayList(Collection

c)

It is used to build an array list that is initialized with the

elements of the collection c.

ArrayList(int

capacity)

It is used to build an array list that has the specified initial

capacity.

Methods of Java ArrayList

Method Description

void add(int index, Object

element)

It is used to insert the specified element at the specified

position index in a list.

boolean addAll(Collection

c)

It is used to append all of the elements in the specified

collection to the end of this list, in the order that they are

returned by the specified collection's iterator.

void clear() It is used to remove all of the elements from this list.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 61 -

int lastIndexOf(Object o) It is used to return the index in this list of the last occurrence of

the specified element, or -1 if the list does not contain this

element.

Object[] toArray() It is used to return an array containing all of the elements in

this list in the correct order.

Object[] toArray(Object[]

a)

It is used to return an array containing all of the elements in

this list in the correct order.

boolean add(Object o) It is used to append the specified element to the end of a list.

boolean addAll(int index,

Collection c)

It is used to insert all of the elements in the specified collection

into this list, starting at the specified position.

Object clone() It is used to return a shallow copy of an ArrayList.

int indexOf(Object o) It is used to return the index in this list of the first occurrence

of the specified element, or -1 if the List does not contain this

element.

void trimToSize() It is used to trim the capacity of this ArrayList instance to be

the list's current size.

5. Write down the methods included in Linked list.Write a Java code for linked list

implementation.

Java LinkedList class

Java LinkedList class uses doubly linked list to store the elements. It provides a linked-list

data structure. It inherits the AbstractList class and implements List and Deque interfaces.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 62 -

The important points about Java LinkedList are:

o Java LinkedList class can contain duplicate elements.

o Java LinkedList class maintains insertion order.

o Java LinkedList class is non synchronized.

o In Java LinkedList class, manipulation is fast because no shifting needs to be

occurred.

o Java LinkedList class can be used as list, stack or queue.

Hierarchy of LinkedList class

As shown in above diagram, Java LinkedList class extends AbstractSequentialList class and

implements List and Deque interfaces.

Doubly Linked List

In case of doubly linked list, we can add or remove elements from both side.

LinkedList class declaration

Let's see the declaration for java.util.LinkedList class.

1. public class LinkedList<E> extends AbstractSequentialList<E> implements List<E

 >, Deque<E>, Cloneable, Serializable

Constructors of Java LinkedList

Constructor Description

LinkedList() It is used to construct an empty list.

LinkedList(Collection

c)

It is used to construct a list containing the elements of the

specified collection, in the order they are returned by the

collection's iterator.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 63 -

Java LinkedList Example

1. import java.util.*;

2. public class TestCollection7{

3. public static void main(String args[]){

4.

5. LinkedList<String> al=new LinkedList<String>();

6. al.add("Ravi");

7. al.add("Vijay");

8. al.add("Ravi");

9. al.add("Ajay");

10.

11. Iterator<String> itr=al.iterator();

12. while(itr.hasNext()){

Method Description

void add(int index, Object

element)

It is used to insert the specified element at the specified position index in a

list.

void addFirst(Object o) It is used to insert the given element at the beginning of a list.

void addLast(Object o) It is used to append the given element to the end of a list.

int size() It is used to return the number of elements in a list

boolean add(Object o) It is used to append the specified element to the end of a list.

boolean contains(Object o) It is used to return true if the list contains a specified element.

boolean remove(Object o) It is used to remove the first occurence of the specified element in a list.

Object getFirst() It is used to return the first element in a list.

Object getLast() It is used to return the last element in a list.

int indexOf(Object o) It is used to return the index in a list of the first occurrence of the specified

element, or -1 if the list does not contain any element.

int lastIndexOf(Object o) It is used to return the index in a list of the last occurrence of the specified

element, or -1 if the list does not contain any element.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 64 -

13. System.out.println(itr.next());

14. }

15. }

16. }

Test it Now

Output:Ravi

 Vijay

 Ravi

 Ajay

Java LinkedList Example: Book

1. import java.util.*;

2. class Book {

3. int id;

4. String name,author,publisher;

5. int quantity;

6. public Book(int id, String name, String author, String publisher, int quantity) {

7. this.id = id;

8. this.name = name;

9. this.author = author;

10. this.publisher = publisher;

11. this.quantity = quantity;

12. }

13. }

14. public class LinkedListExample {

15. public static void main(String[] args) {

16. //Creating list of Books

17. List<Book> list=new LinkedList<Book>();

18. //Creating Books

19. Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);

20. Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc

Graw Hill",4);

21. Book b3=new Book(103,"Operating System","Galvin","Wiley",6);

22. //Adding Books to list

23. list.add(b1);

24. list.add(b2);

25. list.add(b3);

26. //Traversing list

27. for(Book b:list){

http://www.javatpoint.com/opr/test.jsp?filename=TestCollection7

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 65 -

28. System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);

29. }

30. }

31. }

Output:

101 Let us C Yashwant Kanetkar BPB 8

102 Data Communications & Networking Forouzan Mc Graw Hill 4

103 Operating System Galvin Wiley 6

Methods of ArrayList class

1) add(Object o): This method adds an object o to the arraylist.

obj.add("hello");

This statement would add a string hello in the arraylist at last position.

2) add(int index, Object o): It adds the object o to the array list at the given index.

obj.add(2, "bye");

It will add the string bye to the 2nd index (3rd position as the array list starts with index 0) of

array list.

3) remove(Object o): Removes the object o from the ArrayList.

obj.remove("Chaitanya");

This statement will remove the string “Chaitanya” from the ArrayList.

4) remove(int index): Removes element from a given index.

obj.remove(3);

It would remove the element of index 3 (4th element of the list – List starts with o).

5) set(int index, Object o): Used for updating an element. It replaces the element present at

the specified index with the object o.

obj.set(2, "Tom");

It would replace the 3rd element (index =2 is 3rd element) with the value Tom.

6) int indexOf(Object o): Gives the index of the object o. If the element is not found in the

list then this method returns the value -1.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 66 -

int pos = obj.indexOf("Tom");

This would give the index (position) of the string Tom in the list.

7) Object get(int index): It returns the object of list which is present at the specified index.

String str= obj.get(2);

Function get would return the string stored at 3rd position (index 2) and would be assigned to

the string “str”. We have stored the returned value in string variable because in our example

we have defined the ArrayList is of String type. If you are having integer array list then the

returned value should be stored in an integer variable.

8) int size(): It gives the size of the ArrayList – Number of elements of the list.

int numberofitems = obj.size();

9) boolean contains(Object o): It checks whether the given object o is present in the array list

if its there then it returns true else it returns false.

obj.contains("Steve");

It would return true if the string “Steve” is present in the list else we would get false.

10) clear(): It is used for removing all the elements of the array list in one go. The below

code will remove all the elements of ArrayList whose object is obj.

obj.clear();

6. Write down the impotant methods included in Hash set.Write a Java program to

demonstrate working of HashSet

HashSet extends AbstractSet and implements the Set interface. It creates a collection that

uses a hash table for storage.

A hash table stores information by using a mechanism called hashing. In hashing, the

informational content of a key is used to determine a unique value, called its hash code.

The hash code is then used as the index at which the data associated with the key is stored.

The transformation of the key into its hash code is performed automatically.

Following is the list of constructors provided by the HashSet class.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 67 -

Sr.No. Constructor & Description

1 HashSet()

This constructor constructs a default HashSet.

2 HashSet(Collection c)

This constructor initializes the hash set by using the elements of the collection c.

3 HashSet(int capacity)

This constructor initializes the capacity of the hash set to the given integer value

capacity. The capacity grows automatically as elements are added to the HashSet.

4 HashSet(int capacity, float fillRatio)

This constructor initializes both the capacity and the fill ratio (also called load

capacity) of the hash set from its arguments.

Here the fill ratio must be between 0.0 and 1.0, and it determines how full the

hash set can be before it is resized upward. Specifically, when the number of

elements is greater than the capacity of the hash set multiplied by its fill ratio, the

hash set is expanded.

Apart from the methods inherited from its parent classes, HashSet defines following

methods –

Sr.No. Method & Description

1 boolean add(Object o)

Adds the specified element to this set if it is not already present.

2 void clear()

Removes all of the elements from this set.

3 Object clone()

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 68 -

Returns a shallow copy of this HashSet instance: the elements themselves are not

cloned.

4 boolean contains(Object o)

Returns true if this set contains the specified element.

5 boolean isEmpty()

Returns true if this set contains no elements.

6 Iterator iterator()

Returns an iterator over the elements in this set.

7 boolean remove(Object o)

Removes the specified element from this set if it is present.

8 int size()

Returns the number of elements in this set (its cardinality).

Example

The following program illustrates several of the methods supported by HashSet −

 Live Demo

import java.util.*;

public class HashSetDemo {

 public static void main(String args[]) {

 // create a hash set

 HashSet hs = new HashSet();

 // add elements to the hash set

 hs.add("B");

 hs.add("A");

http://tpcg.io/I5NvrB

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 69 -

 hs.add("D");

 hs.add("E");

 hs.add("C");

 hs.add("F");

 System.out.println(hs);

 }

}

This will produce the following result −

Output

[A, B, C, D, E, F]

7. What are the four constructors available in Tree set? Write down the methods included in

constructors.

TreeSet in Java with Examples

java.util.TreeSet is implementation class of SortedSet Interface. TreeSet has following

important properties.

1. TreeSet implements the SortedSet interface so duplicate values are not allowed.

2. TreeSet does not preserve the insertion order of elements but elements are sorted

 by keys.

3. TreeSet does not allow to insert Heterogeneous objects. It will throw

 classCastException at Runtime if trying to add hetrogeneous objects.

4. TreeSet is basically implementation of a self-balancing binary search tree like Red-

 Black Tree. Therefore operations like add, remove and search take O(Log n) time.

 And operations like printing n elements in sorted order takes O(n) time.

Constructors:
Following are the four constructors in TreeSet class.

1. TreeSet t = new TreeSet();
This will create empty TreeSet object in which elements will get stored in default

natural sorting order.

2. TreeSet t = new TreeSet(Comparator comp);
This constructor is used when you externally wants to specify sorting order of elements

getting stored.

3. TreeSet t = new TreeSet(Collection col);
This constructor is used when we want to convert any Collection object to TreeSet

object.

4. TreeSet t = new TreeSet(SortedSet s);

This constructor is used to convert SortedSet object to TreeSet Object.

https://www.geeksforgeeks.org/sortedset-java-examples/
https://www.geeksforgeeks.org/sortedset-java-examples/
https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/
https://www.geeksforgeeks.org/red-black-tree-set-1-introduction-2/

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 70 -

Synchronized TreeSet:
Implementation of TreeSet class is not synchronized. If there is need of synchronized version

of TreeSet, it can be done externally using Collections.synchronizedSet() method.

TreeSet ts = new TreeSet();

Set syncSet = Collections.synchronziedSet(ts);

Adding (or inserting) Elements to TreeSet:
TreeSet supports add() method to insert elements to it.

// Java program to demonstrate insertions in TreeSet

import java.util.*;

class TreeSetDemo

{

 public static void main (String[] args)

 {

 TreeSet ts1= new TreeSet();

 ts1.add("A");

 ts1.add("B");

 ts1.add("C");

 // Duplicates will not get insert

 ts1.add("C");

 // Elements get stored in default natural

 // Sorting Order(Ascending)

 System.out.println(ts1); // [A,B,C]

 // ts1.add(2) ; will throw ClassCastException

 // at run time

 }

}

Output :

[A, B, C]

Null Insertion:
If we insert null in a TreeSet, it throws NullPointerException because while inserting null it

will get compared to existing elements and null can not be compared to any value.

// Java program to demonstrate null insertion

// in TreeSet

import java.util.*;

class TreeSetDemo

{

 public static void main (String[] args)

 {

 TreeSet ts2= new TreeSet();

 ts2.add("A");

https://www.geeksforgeeks.org/null-pointer-exception-in-java/

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 71 -

 ts2.add("B");

 ts2.add("C");

 ts2.add(null); // Throws NullPointerException

 }

}

Output :

Exception in thread "main" java.lang.NullPointerException

 at java.util.TreeMap.put(TreeMap.java:563)

 at java.util.TreeSet.add(TreeSet.java:255)

 at TreeSetDemo.main(File.java:13)

Note: For empty tree-set, when you try to insert null as first value, you will get NPE from

JDK 7.From 1.7 onwards null is not at all accepted by TreeSet. However upto JDK 6, null

will be accepted as first value, but any if we insert any more value in TreeSet, it will also

throw NullPointerException.

Hence it was considered as bug and thus removed in JDK 7.

Methods:

TreeSet implements SortedSet so it has availability of all methods in Collection, Set and

SortedSet interfaces. Following are the methods in Treeset interface.

1. void add(Object o): This method will add specified element according to some

sorting order in TreeSet. Duplicate entires will not get added.

2. boolean addAll(Collection c): This method will add all elements of specified

Collection to the set. Elements in Collection should be homogeneous otherwise

ClassCastException will be thrown.Duplicate Entries of Collection will not be added to

TreeSet.

// Java program to demonstrate TreeSet creation from

// ArrayList

import java.util.*;

class TreeSetDemo

{

 public static void main (String[] args)

 {

 ArrayList al = new ArrayList();

 al.add("GeeksforGeeks");

 al.add("GeeksQuiz");

 al.add("Practice");

 al.add("Compiler");

 al.add("Compiler"); //will not be added

 // Creating a TreeSet object from ArrayList

 TreeSet ts4 = new TreeSet(al);

 // [Compiler,GeeksQuiz,GeeksforGeeks,Practice]

 System.out.println(ts4);

 }

https://www.geeksforgeeks.org/sortedset-java-examples/
http://quiz.geeksforgeeks.org/set-in-java/

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 72 -

}

Output :

[Compiler, GeeksQuiz, GeeksforGeeks, Practice]

void clear() : This method will remove all the elements.

Comparator comparator(): This method will return Comparator used to sort elements

in TreeSet or it will return null if default natural sorting order is used.

boolean contains(Object o): This method will return true if given element is present in

TreeSet else it will return false.

Object first() : This method will return first element in TreeSet if TreeSet is not null

else it will throw NoSuchElementException.

Object last(): This method will return last element in TreeSet if TreeSet is not null else

it will throw NoSuchElementException.

SortedSet headSet(Object toElement): This method will return elements of TreeSet

which are less than the specified element.

SortedSet tailSet(Object fromElement): This method will return elements of TreeSet

which are greater than or equal to the specified element.

SortedSet subSet(Object fromElement, Object toElement): This method will return

elements ranging from fromElement to toElement. fromElement is inclusive and

toElement is exclusive.

// Java program to demonstrate TreeSet creation from

// ArrayList

import java.util.*;

class TreeSetDemo

{

 public static void main (String[] args)

 {

 TreeSet ts5 = new TreeSet();

 // Uncommenting below throws NoSuchElementException

 // System.out.println(ts5.first());

 // Uncommenting below throws NoSuchElementException

 // System.out.println(ts5.last());

 ts5.add("GeeksforGeeks");

 ts5.add("Compiler");

 ts5.add("practice");

 System.out.println(ts5.first()); // Compiler

 System.out.println(ts5.last()); //Practice

 // Elements less than O. It prints

 // [Compiler,GeeksforGeeks]

 System.out.println(ts5.headSet("O"));

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 73 -

 // Elements greater than or equal to G.

 // It prints [GeeksforGeeks, Practice]

 System.out.println(ts5.tailSet("G"));

 // Elements ranging from C to P

 // It prints [Compiler,GeeksforGeeks]

 System.out.println(ts5.subSet("C","P"));

 // Deletes all elements from ts5.

 ts5.clear();

 // Prints nothing

 System.out.println(ts5);

 }

}

Output :

Compiler

practice

[Compiler, GeeksforGeeks]

[GeeksforGeeks, practice]

[Compiler, GeeksforGeeks]

[]

8. What are the two methods in which the comparator interface can be used?Explain with

 program.

Comparator Interface

In Java, Comparator interface is used to order(sort) the objects in the collection in your own

way. It gives you the ability to decide how elements will be sorted and stored within

collection and map.

Comparator Interface defines compare() method. This method has two parameters. This

method compares the two objects passed in the parameter. It returns 0 if two objects are

equal. It returns a positive value if object1 is greater than object2. Otherwise a negative value

is returned. The method can throw a ClassCastException if the type of object are not

compatible for comparison.

Rules for using Comparator interface:

1. If you want to sort the elements of a collection, you need to implement Comparator

 interface.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 74 -

2. If you do not specify the type of the object in your Comparator interface, then, by

 default, it assumes that you are going to sort the objects of type Object. Thus, when

 you override the compare() method ,you will need to specify the type of the

 parameter as Object only.

3. If you want to sort the user-defined type elements, then while implementing the

 Comparator interface, you need to specify the user-defined type generically. If you

 do not specify the user-defined type while implementing the interface,then by

 default, it assumes Object type and you will not be able to compare the user-

 defined type elements in the collection

For Example:

If you want to sort the elements according to roll number, defined inside the class Student,

then while implementing the Comparator interface, you need to mention it generically as

follows:

class MyComparator implements Comparator<Student>{}

If you write only,

class MyComparator implements Comparator {}

Then it assumes, by default, data type of the compare() method's parameter to be Object, and

hence you will not be able to compare the Student type(user-defined type) objects.

Example

Student class

class Student

int roll;

 String name;

 Student(int r,String n)

 {

 roll = r;

 name = n;

 }

 public String toString()

 {

 return roll+" "+name;

 }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 75 -

MyComparator class

This class defines the comparison logic for Student class based on their roll. Student object

will be sorted in ascending order of their roll.

class MyComparator implements Comparator<Student>

{

 public int compare(Student s1,Student s2)

 {

 if(s1.roll == s2.roll) return 0;

 else if(s1.roll > s2.roll) return 1;

 else return -1;

 }

}

public class Test

{

 public static void main(String[] args)

 {

 TreeSet< Student> ts = new TreeSet< Student>(new MyComparator());

 ts.add(new Student(45, "Rahul"));

 ts.add(new Student(11, "Adam"));

 ts.add(new Student(19, "Alex"));

 System.out.println(ts);

 }

}

[11 Adam, 19 Alex, 45 Rahul]

As you can see in the ouput Student object are stored in ascending order of their roll.

Note:

 When we are sorting elements in a collection using Comparator interface, we need

 to pass the class object that implements Comparator interface.

 To sort a TreeSet collection, this object needs to be passed in the constructor of

 TreeSet.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 76 -

 If any other collection, like ArrayList,was used, then we need to call sort method of

 Collections class and pass the name of the collection and this object as a parameter.

 For example, If the above program used ArrayList collection, the public class test

 would be as follows:

public class Test

{

 public static void main(String[] args)

 {

 ArrayList< Student> ts = new ArrayList< Student>();

 ts.add(new Student(45, "Rahul"));

 ts.add(new Student(11, "Adam"));

 ts.add(new Student(19, "Alex"));

 Collections.sort(ts,new MyComparator()); /*passing the name of the ArrayList and the

object of the class that implements Comparator in a predefined sort() method in Collections

class*/

 System.out.println(ts);

 }

}

9. Explain about Premain method. Create a class with premain method.

As the name indicates premain methods are the methods which can be executed before main

method. Java Instrumentation will give a demonstration of how powerful Java is. Most

importantly, this power can be realized by a developer for innovative means. For example

using Java instrumentation, we can access a class that is loaded by the Java classloader from

the JVM and modify its bytecode by inserting our custom code, all these done at runtime.

Don´t worry about security, these are governed by the same security context applicable for

Java classes and respective classloaders.

let us learn to instrument Java byte code using Java instrumentation. Mostly profilers,

application monitoring agents, event loggers use Java instrumentation. This will serve as

introductory level tutorial and once it is done, you can write a basic Java agent and do

instrumentation on the Java byte code.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 77 -

Note:

Package java.lang.instrument provides services that allow Java programming language agents

to instrument programs running on the JVM. The mechanism for instrumentation is

modification of the byte-codes of methods.

Key Components of Java Instrumentation:

--

Agent ? is a jar file containing agent and transformer class files.

Agent Class ? A java class file, containing a method named ´premain´.

Manifest ? manifest.mf file containing the "premain-class" property.

Transformer ? A Java class file implementing the interface ClassFileTransformer.

Instrumentation Agent Class:

--

Agent class contains the premain method and that is key in Java insturmentation. This is

similar to the ´main´ method. This class is loaded by the same system classloader as it loads

the other Java classes. premain method can have the following signatures,

1. public static void premain(String agentArgs, Instrumentation inst);

2. public static void premain(String agentArgs);

Example of Premain method or Writing Your Own Agent:

A Java Agent, once registered with the class loader, has a single method:

public class SkeletonClassFileTransformer implements ClassFileTransformer {

public byte[] transform(ClassLoader loader, String className, Class<?>

classBeingRedefined,

ProtectionDomain protectionDomain, byte[] classfileBuffer) throws

IllegalClassFormatException {

return null;

}

}

A Java Agent is given the option of modifying the array of bytes representing the class before

the class loader finishes the class loading process. Here is a specification of class loading. In

a nutshell, the bytes are given to the Java Agent after the class loader has retrieved them but

before Linking. Your Java Agent can create a new byte array in a valid class file format and

return it or, if it is not performing a transformation, return null.

Following is an example that simply prints a message like the following:

--

Class: StringCoding in: java/lang

Class: StringCoding$CharsetSE in: java/lang

Class: StringCoding$StringEncoder in: java/lang

Class: Main in: in/anyforum

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 78 -

Class: Shutdown in: java/lang

Class: Shutdown$Lock in: java/lang

package in.anyforum;

import java.lang.instrument.ClassFileTransformer;

import java.lang.instrument.IllegalClassFormatException;

import java.security.ProtectionDomain;

public class ClassAndPackageNamePrintingClassFileTransformer implements

ClassFileTransformer {

public byte[] transform(ClassLoader loader, String fullyQualifiedClassName, Class<?>

classBeingRedefined,

ProtectionDomain protectionDomain, byte[] classofileBuffer) throws

IllegalClassFormatException {

String className = fullyQualifiedClassName.replaceAll(".*/", "");

String pacakge = fullyQualifiedClassName.replaceAll("/[a-zA-Z$0-9_]*$", "");

System.out.printf("Class: %s in: %s\n", className, pacakge);

return null;

}

}

How do you get all of this to work? Here´s what you´ll need to do:

1. Create an Implementation of ClassFileTransformer

2. Create a class with a premain method (could be in the first class, but but that would

 violate The Single Responsibility Principle).

3. Create jar file

4. Star the VM with a command line parameter.

1. Create an Implementation of ClassFileTransformer:

The class above is a complete example of a class that can “transform” a just-loaded class. By

itself, it really does not do much. However, if you´d like to perform some custom

transformation, you could create a new byte array, add in some Java Bytecodes and then

return that class instead.

Why would you do this? Here are a few examples:

1. You´re adding logging code to a class

2. Custom implementation of AOP

3. Instrument a class to better thread-based testing (my reason for looking into this in the first

place)

4. Etc

2. Create a class with a premain method:

The class file transformer is not directly added to the class loader. Instead, you create another

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 79 -

class with a method called premain that instantiates the class and registers it. Here is a

complete example:

package in.anyforum;

import java.lang.instrument.ClassFileTransformer;

import java.lang.instrument.Instrumentation;

public class RegisterMyClassFileTransformer {

public static void premain(String agentArguments, Instrumentation instrumentation) {

instrumentation.addTransformer(new

ClassAndPackageNamePrintingClassFileTransformer());

}

}

3. Create Jar File:

When you add a class file transformer to the class loader, you must specify the name of a jar

file. You cannot simply name a class in the classpath. So if the

ClassAndPackageNamePrintingClassFileTransformer is in the class path, then you need to

add the class RegisterMyClassFileTransformer to a jar file and add a manifest file to specify

it.

The jar file needs to have the following structure:

Top Of Jar File

<sub directory>in

<sub directory>anyforum

<file>RegisterMyClassFileTransformer.class

<sub directory>META-INF

<file>MANIFEST.MF

The contents of the MANIFEST.MF file, at a minimum, would be:

Manifest-Version: 1.0

Premain-Class: in.anyforum.RegisterMyClassFileTransformer

4. Start the VM:

Finally, we need to star the VM:

java –javaagent:MyJarFile.jar <A Regular Class With A Main>

10. Explain about Generics in JAVA.

Generics

Generics was first introduced in Java5. Now it is one of the most profound feature of java

programming language. Generic programming enables the programmer to create

classes,interfaces and methods in which type of data is specified as a parameter. It provides a

facility to write an algorithm independent of any specific type of data. Generics also provide

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 80 -

type safety. Type safety means ensuring that an operation is being performed on the right

type of data before executing that operation.

Using Generics, it has become possible to create a single class ,interface or method that

automatically works with all types of data(Integer, String, Float etc). It has expanded the

ability to reuse the code safely and easily.

Before Generics was introduced, generalized classes,interfaces or methods were created using

references of type Object because Object is the super class of all classes in Java, but this way

of programming did not ensure type safety.

Syntax for creating an object of a generic type

Class_name <data type> reference_name = new Class_name<data type> ();

OR

Class_name <data type> reference_name = new Class_name<>();

This is also known as Diamond Notation of creating an object of Generic type.

Example of Generic class

class Gen <T> //<> brackets indicates that the class is of generic type

{

T ob; //an object of type T is declared

Gen(T o) //constructor

{

 ob = o;

}

public T getOb()

{

 return ob;

}

}

class Test

{

public static void main (String[] args)

{

 Gen < Integer> iob = new Gen<>(100); //instance of Integer type Gen Class.

 int x = iob.getOb();

 System.out.println(x);

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 81 -

 Gen < String> sob = new Gen<>("Hello"); //instance of String type Gen Class.

 String str = sob.getOb();

 System.out.println(str);

}

}

100

Hello

In the above program, we first passed an Integer type parameter to the Generic class. Then,

we passed a String type parameter to the same Generic class. Hence, we reused the same

class for two different data types. Thus, Generics helps in code reusability with ease.

Generics Work Only with Objects

Generics work only with objects i.e the type argument must be a class type.You cannot use

primitive datatypes such as int, char etc. with Generics type. It should always be an object.

We can use all the Wrapper Class objects and String class objects as Generic type.

Gen<int> iOb = new Gen<int>(07); //Error, can't use primitive type

Generics Types of different Type Arguments are never same

Reference of one generic type is never compatible with other generic type unless their type

argument is same. In the example above we created two objects of class Gen, one of

type Integer, and other of type String, hence,

iob = sob; //Absolutely Wrong

An array of Generic type cannot be created

Creation of a generic type array is not allowed in Generic programming. We can make a

reference of an array, but we cannot instantiate it.

For example, In the above program, in class Gen,

T a[]; //this is allowed

T a[] = new T[10]; //this is not allowed

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 82 -

Generic Type with more than one parameter

In Generic parameterized types, we can pass more than 1 data type as parameter. It works the

same as with one parameter Generic type.

class Gen <T1,T2>

{

T1 name;

T2 value;

Gen(T1 o1,T2 o2)

{

 name = o1;

 value = o2;

}

public T1 getName()

{

 return name;

}

public T2 getValue()

{

 return value;

}

}

class Test

{

public static void main (String[] args)

{

 Gen < String,Integer> obj = new Gen<>("StudyTonight",1);

 String s = obj.getName();

 System.out.println(s);

 Integer i = obj.getValue();

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 83 -

 System.out.println(i);

}

}

Note: Since there are two parameters in Generic class - T1 and T2, therefore, while creating

an instance of this Generic class, we need to mention two data types that needs to be passed

as parameter to this class.

Generic Methods

You can also create generic methods that can be called with different types of arguments.

Based on the type of arguments passed to generic method, the compiler handles each method.

The syntax for a generic method includes a type-parameter inside angle brackets, and should

appear before the method's return type.

<type-parameter> return_type method_name (parameters) {...}

Example of Generic method

class GenTest

{

 static < V, T> void display (V v, T t)

 {

 System.out.println(v.getClass().getName()+" = " +v);

 System.out.println(t.getClass().getName()+" = " +t);

 }

 public static void main(String[] args)

 {

 display(88,"This is string");

 }

}

java lang.Integer = 88

java lang.String = This is string

Generic Constructors

It is possible to create a generic constructor even if the class is not generic.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 84 -

Example of Generic Constructor

class Gen

{

 private double val;

 < T extends Number> Gen(T ob)

 {

 val=ob.doubleValue();

 }

 void show()

 {

 System.out.println(val);

 }

}

class Test

{

 public static void main(String[] args)

 {

 Gen g = new Gen(100);

 Gen g1 = new Gen(121.5f);

 g.show();

 g1.show();

 }

}

100.0

121.5

Generic Interface

Like classes and methods, you can also create generic interfaces.

interface MyInterface< T >

{ .. }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 85 -

Generic Bounded type Parameter

You can also set restriction on the type that will be allowed to pass to a type-parameter. This

is done with the help of extends keyword when specifying the type parameter.

 < T extends Number >

Here we have taken Number class, it can be any wrapper class name. This specifies that T

can be only be replaced by Number class data itself or any of its subclass.

Generic Method with bounded type Parameters.

class Gen

{

 static < T, V extends number> void display(T t, V v)

 {

 System.out.println(v.getClass().getName()+" = " +v);

 System.out.println(t.getClass().getName()+" = " +t);

 }

 public static void main(String[] args)

 {

 // display(88,"This is string");

 display ("this is string",99);

 }

}

java.lang.String = This is string

java.lang.Double = 99.O

UNIT III

1. (i) Give a detailed note on I/O packages

 Byte streams provide a convenient means for handling input and output of bytes.

Byte streams are used, when reading or writing binary data.

 Character streams provide a convenient means for handling input and output of

characters.

The Byte Stream Classes

 Byte streams are defined by using two class hierarchies.

 InputStream and OutputStream are designed for byte streams.

 Important methods are, Read & Write - read and write bytes of data

The Character Stream Classes

 Character streams are defined by using two class hierarchies.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 86 -

 Abstract classes :Reader and Writer

 Methods : read() and write() - which read and write characters of data

(ii) Illustrate with a Java program to define and use an inner class

class Outer {

int outer_x = 100;

void test() {

Inner inner = new Inner();

inner.display();

}

// this is an inner class

class Inner {

void display() {

System.out.println("display: outer_x = " + outer_x);

}}}

class InnerClassDemo {

public static void main(String args[]) {

Outer outer = new Outer();

outer.test();

}}

2. What is a servlet? Explain briefly the Servlet life cycle and Servlet HTTP package.

A servlet is a Java programming language class used to extend the capabilities of a server.

Although servlets can respond to any types of requests, they are commonly used to extend the

applications hosted by web servers

Life cycle of a servlet:

 init() - invoked when the servlet is first loaded into memory

 service() - called for each HTTP request (for processing)

 destroy() - unloads the servlet from its memory

Interface: HttpServletRequest, HttpServletResponse, HttpSession,

HttpSessionBindingListener

Class: Cookie, HttpServlet, HttpSessionEvent, HttpSessionBindingEvent

3. Write short notes on

(i) Inner Classes

An inner class is a non-static nested class. It has access to all of the variables and methods of

its outer class and may refer to them directly in the same way that other non-static members

of the outer class do. Thus, an inner class is fully within the scope of its enclosing class.

import java.applet.*;

import java.awt.event.*;

/* <applet code="AnonymousInnerClassDemo" width=200 height=100></applet>*/

public class AnonymousInnerClassDemo extends Applet {

public void init() {

addMouseListener(new MouseAdapter() {

public void mousePressed(MouseEvent me) {

showStatus("Mouse Pressed");

}}}}

(ii) JDBC :

JDBC is used for accessing databases from Java applications. Information is transferred from

http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/Class_%28computer_programming%29
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Web_server

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 87 -

relations to objects and vice-versa

- databases optimized for searching/indexing

- objects optimized for engineering/flexibility

JDBC Architecture.

The topmost layer in this model is the Java application.

A Java application that uses JDBC can talk to many databases.

Like ODBC, JDBC provides a consistent way to connect to a database, execute commands,

and retrieve the results.

The JDBC DriverManager

The JDBC DriverManager class is responsible for locating a JDBC driver needed by the

application.

When a client application requests a database connection, the request is expressed in the form

of a URL (Uniform Resource Locator).

URL might look like

jdbc:odbc:DSNName

Steps:

 Load the driver

 Define the connection URL

 Establish the connection

 Create a Statement object

 Execute a query using the Statement

 Process the result

 Close the connection

import java.sql.*;

public class jdbcodbc

{

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 88 -

public static void main(String arg[])throws Exception,SQLException

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception e){}

Connection cn=DriverManager.getConnection("jdbc:odbc:sam");

Statement s=cn.createStatement();

s.executeUpdate("insert into student values('monisha',66)");

String e="select * from student";

ResultSet rs=s.executeQuery(e);

while(rs.next())

{

 System.out.println("Name:"+rs.getString(1));

 System.out.println("no:"+rs.getInt(2));

}

s.close();

cn.close();

}

}

4. Write a program to perform arithmetic operation using RMI.

AddServerIntf.java

import java.rmi.*;

public interface AddServerIntf extends Remote

{

 double add(double d1,double d2)throws RemoteException;

 double sub(double d1,double d2)throws RemoteException;

}

AddServerImpl.java

import java.rmi.*;

import java.rmi.server.*;

public class AddServerImpl extends UnicastRemoteObject implements AddServerIntf

{

 public AddServerImpl()throws RemoteException

{

}

public double add(double d1,double d2)throws RemoteException

{

 return d1+d2;

}

public double sub(double d1,double d2)throws RemoteException

{

 return d1-d2;

}

}

AddServer.java

import java.net.*;

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 89 -

import java.rmi.*;

public class AddServer

{

 public static void main(String args[])

 {

 try

 {

 AddServerImpl addserverimpl=new AddServerImpl();

 Naming.rebind("AddServer",addserverimpl);

 }

 catch(Exception e)

 {

 System.out.println("\nException:" +e);

 }

}

}

AddClient.java

import java.rmi.*;

public class AddClient

{

 public static void main(String args[])

 {

 try

 {

 String addserverurl="rmi://" +args[0]+ "/AddServer";

 AddServerIntf addserverintf=(AddServerIntf)Naming.lookup(addserverurl);

 System.out.println("\nthe first number is : " +args[1]);

 double d1=Double.valueOf(args[1]).doubleValue();

 System.out.println("\nthe second number is : " +args[2]);

 double d2=Double.valueOf(args[2]).doubleValue();

 System.out.println("\nSum is : " +addserverintf.add(d1,d2));

 System.out.println("\nSubtraction : " +addserverintf.sub(d1,d2));

}

 catch(Exception e)

 {

 System.out.println("\nException : " +e);

 }

 }

}

5. Design an application for Student Result Checking using Servlet and JDBC.

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

public class JdbcStudent extends HttpServlet

{

 Connection dbConn2;

 public void init(ServletConfig config)throws ServletException

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 90 -

 {

 super.init(config);

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 dbConn2=DriverManager.getConnection("jdbc:odbc:wind");

 }

 catch(ClassNotFoundException e)

 {

 System.out.println("JDBC-ODBC bridge not found");

 return;

 }

 catch(SQLException e)

 {

 System.out.println("SQL exception thrown in init");

 return;

 }

 }

public void doGet(HttpServletRequest request,HttpServletResponse response)throws

 ServletException,IOException

 {

 try

 {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 Statement stat=dbConn2.createStatement();

 ResultSet students=stat.executeQuery(

 "SELECT studentid,studentname,grade,email FROM " +

 " Student");

 out.println("<HTML>");

 out.println("<HEAD><TITLE> Student List </TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<H2> Student List </H2>");

 out.println("<TABLE BORDER=1>");

 out.println("<TR><TH>Student ID</TH>");

 out.println("<TH> Student Name </TH>");

 out.println("<TH> Grade </TH>");

 out.println("<TH> Email </TH></TR>");

 while(students.next())

 {

 out.println("<TR><TD>" +

 students.getString("studentid") + "</TD><TD>" +

 students.getString("studentname") + "</TD><TD>" +

 students.getString("grade") + "</TD><TD>" +

 students.getString("email") + "</TD><TR>");

 }

 out.println("</TABLE>");

 out.println("</BODY></HTML>");

 out.close();

 }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 91 -

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 public String getServletInfo()

 {

 return "Sample JDBC Servlet";

 }

}

6. Write a Java swing program to perform personal information system.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.sql.*;

import java.util.logging.Level;

import java.util.logging.Logger;

public class personal_info extends JFrame{

 //Initializing Components

 privateJTextField inputs[];

 privateJButton add, reset;

 privateJLabel labels[];

 private final String fldLabel[] = {"First Name: ","Last Name: ","Age: ","

Address:","Country:","State:","City:","Phoneno:","Email ID:"};

 privateJPanel p1;

 Connection con;

 Statement st;

 String url;

 //Setting up GUI -Interface

publicpersonal_info() {

 //Setting up the Title of the Window

 super("Personal Information");

 //Set Size of the Window (WIDTH, HEIGHT)

 setSize(300,180);

 //Exit Property of the Window

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 //Constructing Components

 inputs = new JTextField[9];

 labels = new JLabel[9];

 add = new JButton("Add");

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 92 -

 reset = new JButton("Reset");

 p1 = new JPanel();

 //Setting Layout on JPanel 1 with 5 rows and 2 column

 p1.setLayout(new GridLayout(5,2));

 //Setting up the container ready for the components to be added.

 Container pane = getContentPane();

 setContentPane(pane);

 //Setting up the container layout

 GridLayout grid = new GridLayout(1,1,0,0);

 pane.setLayout(grid);

 //Creating a connection to MS Access and fetching errors using "try-catch" to check if

it is successfully connected or not.

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 con = DriverManager.getConnection("jdbc:odbc:sam");

 st = con.createStatement();

 JOptionPane.showMessageDialog(null,"Successfully Connected to

Database","Confirmation", JOptionPane.INFORMATION_MESSAGE);

 }

 catch (HeadlessException | ClassNotFoundException | SQLException e)

 {

 JOptionPane.showMessageDialog(null,"Failed to Connect to Database","Error

Connection", JOptionPane.ERROR_MESSAGE);

 System.exit(0);

 }

 //Constructing JLabel and JTextField using "for loop" in their desired order

 for(int count=0; count<inputs.length&& count<labels.length; count++)

 {

 labels[count] = new JLabel(fldLabel[count]);

 inputs[count] = new JTextField(20);

 //Adding the JLabel and the JTextFied in JPanel 1

 p1.add(labels[count]);

 p1.add(inputs[count]);

 }

 //Implemeting Even-Listener on JButton add

 add.addActionListener(

 newActionListener() {

 //Handle JButton event if it is clicked

 public void actionPerformed(ActionEvent event) {

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 93 -

 //checking weather the fields are empty

 boolean pass=true;

 for(int i=0;i<inputs.length;i++)

 {

 if(inputs[i].getText().equals(""))

 pass=false;

 }

 if(pass ==false)

 JOptionPane.showMessageDialog(null,"Fill up all the Fields","Error

Input", JOptionPane.ERROR_MESSAGE);

 else

 try {

 String add = "insert into person

(fname,lname,age,address,country,state,city,phone,mail)"+"values

('"+inputs[0].getText()+"','"+inputs[1].getText()+"','"+inputs[2].getText()+"','"+inputs[3].getT

ext()+"','"+inputs[4].getText()+"','"+inputs[5].getText()+"','"+inputs[6].getText()+"','"+inputs

[7].getText()+"','"+inputs[8].getText()+"')";

 st.execute(add); //Execute the add sql

JOptionPane.showMessageDialog(null,"Data Successfully Inserted","Confirmation",

JOptionPane.INFORMATION_MESSAGE);

 }

 catch (NumberFormatException e)

 {

 JOptionPane.showMessageDialog(null,"Please enter an integer on the

Field AGE","Error Input", JOptionPane.ERROR_MESSAGE);

 } catch (SQLException ex) {

 ex.printStackTrace();

 Logger.getLogger(personal_info.class.getName()).log(Level.SEVERE,

null, ex);

 }

 }

 }

);

 //Implemeting Even-Listener on JButton reset

 reset.addActionListener(

 newActionListener() {

 //Handle JButton event if it is clicked

 public void actionPerformed(ActionEvent event)

 {

 inputs[0].setText(null);

 inputs[1].setText(null);

 inputs[2].setText(null);

 inputs[3].setText(null);

 inputs[4].setText(null);

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 94 -

 inputs[5].setText(null);

 inputs[6].setText(null);

 inputs[7].setText(null);

 inputs[8].setText(null);

 }

 }

);

 //Adding JButton "add" and "reset" to JPanel 1 after the JLabel and JTextField

 p1.add(add);

 p1.add(reset);

 //Adding JPanel 1 to the container

 pane.add(p1);

 /**Set all the Components Visible.

 * If it is set to "false", the components in the container will not be visible.

 */

 setVisible(true);

 }

 //Main Method

public static void main (String[] args) throws SQLException {

 personal_info aid = new personal_info();

 }

}

7. List out the classes and interfaces available in javax.servlet.http package.

Interface Description

HttpServletRequest Enables servlets to read data from an HTTP request.

HttpServletResponse Enables servlets to write data to an HTTP response.

HttpSession Allows session data to be read and written.

HttpSessionBindingListener Informs an object that it is bound to or unbound from a

session.

Class Description

Cookie Allows state information to be stored on a client

machine.

HttpServlet Provides methods to handle HTTP requests and

responses.

HttpSessionEvent Encapsulates a session-changed event.

HttpSessionBindingEvent Indicates when a listener is bound to or unbound from a

session value, or that a session attribute changed.

8. Write short notes on the following servlet classes

GenericServlet, ServletInputStream, ServletOutputStream and ServletException

 init() method - invoked when the servlet is first loaded into memory

 service() - called for each HTTP request (for processing)

 destroy() - unloads the servlet from its memory

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 95 -

 - The server calls the destroy() method to relinquish any resources such as file

 handles that are allocated for the servlet

GenericServlet - Implements the Servlet and ServletConfig interfaces.

ServletInputStream - Provides an input stream for reading requests from a client.

ServletOutputStream - Provides an output stream for writing responses to a client.

ServletException - Indicates a servlet error occurred

GenericServlet

 The GenericServlet class provides implementations of the basic life cycle methods for

a servlet

 GenericServlet implements the Servlet and ServletConfig interfaces.

 a method log() is available to append a string to the server log file.

Methods:

 void log(String s)

 void log(String s, Throwable e) s is the string to be appended to the log, and e is an

exception that occurred.

The ServletInputStream Class

 The ServletInputStream class extends InputStream.

 It is implemented by the server and provides an input stream that a servlet developer

can use to read the data from a client request.

Method :

 int readLine(byte[] buffer, int offset, int size) throws IOException

 read bytes from the stream.

 buffer is the array into which size bytes are placed starting at offset.

The ServletOutputStream Class
 The ServletOutputStream class extends OutputStream.

 It is implemented by the server and provides an output stream that a servlet developer

can use to write data to a client response.

 It also defines the print() and println() methods, which output data to the stream.

The ServletException Class

 ServletException, which indicates that a servlet problem has occurred.

 The second is UnavailableException, which extends ServletException. It indicates

that a servlet is unavailable.

9. Explain JApplet, Icons and JLabel in detail.

Fundamental to Swing is the JApplet class, which extends Applet. Applets that use Swing

must be subclasses of JApplet. JApplet is rich with functionality that is not found in Applet.

For example, JApplet supports various “panes,” such as the content pane, the glass pane, and

the root pane. When adding a component to an instance of JApplet, do not invoke the add()

method of the applet. Instead, call add() for the content pane of the JApplet object. The

content pane can be obtained via the method shown here:

Container getContentPane()

The add() method of Container can be used to add a component to a content pane. Its form

is shown here:

void add(comp)

Here, comp is the component to be added to the content pane.

Icon: In Swing, icons are encapsulated by the ImageIcon class, which paints an icon from an

image. Two of its constructors are shown here:

ImageIcon(String filename)

ImageIcon(URL url)

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 96 -

The first form uses the image in the file named filename. The second form uses the image in

the resource identified by url.

Labels: Swing labels are instances of the JLabel class, which extends JComponent. It can

display text and/or an icon. Some of its constructors are shown here:

JLabel(Icon i)

Label(String s)

JLabel(String s, Icon i, int align)

Here, s and i are the text and icon used for the label. The align argument is either LEFT,

RIGHT, CENTER, LEADING, or TRAILING. These constants are defined in the

SwingConstants interface, along with several others used by the Swing classes. The icon and

text associated with the label can be read and written by the following methods:

Icon getIcon()

String getText()

void setIcon(Icon i)

void setText(String s)

Here, i and s are the icon and text, respectively

10. Give an example program for JCheckbox in Java Swing.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JCheckBoxDemo" width=400 height=50>

</applet>

*/

public class JCheckBoxDemo extends JApplet

implements ItemListener {

JTextField jtf;

public void init() {

// Get content pane

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

// Create icons

ImageIcon normal = new ImageIcon("normal.gif");

ImageIcon rollover = new ImageIcon("rollover.gif");

ImageIcon selected = new ImageIcon("selected.gif");

// Add check boxes to the content pane

JCheckBox cb = new JCheckBox("C", normal);

cb.setRolloverIcon(rollover);

cb.setSelectedIcon(selected);

cb.addItemListener(this);

contentPane.add(cb);

cb = new JCheckBox("C++", normal);

cb.setRolloverIcon(rollover);

cb.setSelectedIcon(selected);

cb.addItemListener(this);

contentPane.add(cb);

cb = new JCheckBox("Java", normal);

cb.setRolloverIcon(rollover);

cb.setSelectedIcon(selected);

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 97 -

cb.addItemListener(this);

contentPane.add(cb);

cb = new JCheckBox("Perl", normal);

cb.setRolloverIcon(rollover);

cb.setSelectedIcon(selected);

cb.addItemListener(this);

contentPane.add(cb);

// Add text field to the content pane

jtf = new JTextField(15);

contentPane.add(jtf);

}

public void itemStateChanged(ItemEvent ie) {

JCheckBox cb = (JCheckBox)ie.getItem();

jtf.setText(cb.getText());

}

}

11. The idea of random mono alphabetic cipher is to use random letters for 'encrypting

the input text. Suppose the keyword is FEATHER. Then first remove duplicate letters,

yielding FEATHR, and append the other letters of the alphabet in reverse order. Now

encrypt the letters as follows: ABCDEFGHIJKLMNOPQRSTUVWXYZ

EATHRZYXWVUSQPONMLKJIGDCB

 (DEC2014)

Write a Java program that encrypts and decrypts a file using this cipher.

private static char[] alphabet = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',

'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',

'w', 'x', 'y', 'z'};

public static char[] shiftAlphabet(int shift)

{

 char[] newAlpha = new char[26];

 for (int i = 0; i < 26; i++)

 {

 if(((i + shift) < 26) && ((i + shift) >= 0))

 {

 newAlpha[i] = alphabet[i + shift];

 }

 else if ((i + shift) >= 26)

 {

 newAlpha[i] = alphabet[i + shift - 26];

 }

 }

 return newAlpha;

}

public static String encrypt(String s, int shift)

{

 String e = "";

 for(int i = 0; i < s.length(); i++)

 {

 char letter = s.charAt(i);

 if (letter != ' ')

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 98 -

 {

 int f = find(alphabet, letter);

 if(((f + shift) < 26) && ((f + shift) >= 0))

 {

 letter = alphabet[f + shift];

 }

 else if ((f + shift) >= 26)

 {

 letter = alphabet[f + shift - 26];

 }

 e = e + String.valueOf(letter);

 }

 else

 {

 e = e + " ";

 }

 }

 return e;

}

public static int find(char[] c, char c2)

{

 int w = 0;

 for(int i = 0; i < c.length; i++)

 {

 if(c[i] == (c2))

 w = i;

 }

 return w;

}

12.Create a table (ORACLE) namely "ernp" with the fields eid., ename, hra, da, pf and

lie (ii) Insert 10 records into the table (iii) Alter the table by adding one more field

namely netpay (iv) Compute the netpay of each employee and display it on the screen

and also store it in the table. (DEC2014)

package payslips;

import java.util.*;

import payslips.Employee;

import payslips.Payslip;

public class MainProgramme

{

 public static String name;

 public static String street;

 public static String town;

 public static String postcode;

 public static int payrollNo;

 public static char taxcode;

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 99 -

 public static String type;

 static Scanner sc = new Scanner(System.in);

 static Scanner sd = new Scanner(System.in);

 static int tempvar;

 static int temppayrollNo;

 static ArrayList<Employee> list = new ArrayList<Employee>();

 static String names[] = { "John Hepburn", "David Jones", "Louise White",

 "Harry Martin", "Christine Robertson" };

 static String streets[] = { "50 Granton Road", "121 Lochend Park",

 "100 Govan Avenue", "51 Gorgie Road", "1 Leith Street" };

 static String towns[] = { "Edinburgh", "Edinburgh", "Glasgow", "Edinburgh",

 "Edinburgh" };

 static String postcodes[] = { "EH6 7UT", "EH1 1BA", "G15 5GG", "EH5 2PR",

 "EH4 4ST" };

 static int payrollNos[] = { 10001, 10002, 10003, 10004, 10005 };

 static char taxcodes[] = { 'C', 'B', 'C', 'C', 'B' };

 static String types[] = { "Monthly", "Weekly", "Monthly", "Monthly","Weekly" };

 public static void main(String[] args)

 {

 for (int i = 0; i < 5; i++) {

 name = names[i];

 street = streets[i];

 town = towns[i];

 postcode = postcodes[i];

 payrollNo = payrollNos[i];

 taxcode = taxcodes[i];

 type = types[i];

 Employee e = new Employee(name, street, town, postcode, payrollNo,taxcode, type);

 list.add(e);

 }

 // statements and prompts within the console for the user to follow

 System.out.println("Welcome to your Payroll System");

 System.out.println();

 System.out.println("Please enter your choice below from the following options");

 System.out.println();

 System.out.println("View all current weekly employees = 1 ");

 System.out.println("View all current monthly employees = 2 ");

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 100 -

 System.out.println("Delete an employee = 3 ");

 System.out.println("Add an employee = 4 ");

 System.out.println("Print an employee payslip = 5");

 System.out.println("To exit the system = 0 ");

 // allows user to enter number of choice and this reflects which statement is ran in

userChoice method

 tempvar = sc.nextInt();

 // runs the userChoice method

 userChoice();

 }

 // method to determine what statement runs according to which choice user makes

 public static void userChoice()

 {

 Employee tempEmployee = new Employee();

 boolean foundEmployee = false;

 // if user enters 1 it prints out the employee list.

 if (tempvar == 1)

 {

 Weekly.printWeekly();

 }

 else if (tempvar == 2)

 {

 Monthly.printMonthly();

 }

 else if (tempvar == 3)

 {

 printEmployeelist();

 System.out.println("");

 System.out.println("Above are a list of all employees.");

 System.out.println("Please enter the payroll number of the employee you wish to

delete from the system");

 temppayrollNo = sc.nextInt();

 // while loop to search on payroll number, deletes the employee if correct, error

message if not

 if (list.isEmpty() == false)

 {

 int a = 0;

 while (a < list.size())

 {

 tempEmployee = list.get(a);

 if (tempEmployee.payrollNo == temppayrollNo)

 {

 foundEmployee = true;

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 101 -

 break;

 }

 a++;

 }

 if (foundEmployee == true)

 {

 System.out.println("You have deleted : "+ tempEmployee.getName());

 System.out.println();

 list.remove(tempEmployee);

 printEmployeelist();

 }

 else

 {

 System.out.println("The payroll number you have entered is incorrect");

 }

 }

 }

 else if (tempvar == 4) // allows the user to add an employee to the employee list,

entering details using scanner

 {

 // initialises variables for entering title

 String tempstring1;

 int stringlength;

 int whitespace;

 String tempstring2;

 String tempstring3;

 // initialises variables for entering title

 String tempstring4;

 int stringlength2;

 int whitespace2;

 String tempstring5;

 String tempstring6;

 String tempstring7;

 System.out.println("You have chosen to add an employee to the system");

 System.out.println();

 // block of code that builds string together to get employee name

 System.out.println("Please enter the name of the new employee: ");

 tempstring1 = sd.nextLine(); // takes in string using scanner

 stringlength = tempstring1.length(); // saves length of string

 if (tempstring1.contains(" ")) // if statement to see if the string contains a space

 {

 whitespace = tempstring1.indexOf(" "); // finds the whitespace

 tempstring2 = tempstring1.substring((0), (whitespace));// creates string from start

of input to whitespace

 tempstring3 = tempstring1.substring((whitespace) + 1,(stringlength));// creates

string from whitespace plus one and adds on rest of the string

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 102 -

 tempEmployee.setName(tempstring2 + " " + tempstring3); // combines tempstring1

and tempstring2 together to complete full string

 }

 else // else statement that just enters the string if it is just one word

 {

 tempEmployee.setName(tempstring1);

 }

 // block of code that repeats same process as above to get street name

 System.out.println("Please enter the address of the employee: ");

 tempstring4 = sd.nextLine();

 stringlength2 = tempstring4.length();

 if (tempstring4.contains(" ")) {

 whitespace2 = tempstring4.indexOf(" ");

 tempstring5 = tempstring4.substring((0), (whitespace2));

 tempstring6 = tempstring4.substring((whitespace2) + 1,(stringlength2));

 tempEmployee.setStreet(tempstring5 + " " + tempstring6);

 }

 else

 {

 tempEmployee.setStreet(tempstring4);

 }

 System.out.println("Please enter the town: ");

 tempEmployee.setTown(sd.nextLine());// takes in town using scanner

 System.out.println("Please enter the postcode: ");

 tempstring7 = sd.nextLine(); //post code using scanner

 if (tempstring7.length() > 5 && tempstring7.length() < 9) // sets the length of string

 {

 tempEmployee.setPostcode(tempstring7);

 }

 else

 {

 tempEmployee.setPostcode("You have not entered a valid UK postcode");

 }

 tempEmployee.setPayrollNo(payrollNo + 1); // sets payroll number to next in

sequence

 System.out.println("Please enter your Tax code (A, B or C): ");

 tempEmployee.setTaxcode(sd.next().charAt(0));// takes in tax code using scanner

 System.out.println("Please enter Employee Type (Weekly or Monthly): ");

 tempEmployee.setType(sd.next()); //takes in type of employee

 list.add(tempEmployee);// creates temp employee and adds to list

 printEmployeelist();// prints employee list to view

 }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 103 -

 else if (tempvar == 5)

 {

 Payslip.Payslips(); //runs payslip method from payslip class

 }

 else if (tempvar == 0) // if user hits 0 it allows them to exit the programme

 {

 System.out.println("You have exited the system");

 System.exit(0);

 }

 else // if any other choice entered they will be met with this message

 {

 System.out.println("You have entered the wrong choice");

 }

 }

 // method to create the book list using a for loop

 public static void printEmployeelist() {

 for (int i = 0; i < list.size(); i++)

 System.out.println(list.get(i));

 }

}

13. Explain about swing fundamentals and swing classes.(DEC 2015)

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to create

window-based applications. It is built on the top of AWT (Abstract Windowing Toolkit) API

and entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField,

JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 104 -

Java Swing Examples

There are two ways to create a frame:

 By creating the object of Frame class (association)

 By extending Frame class (inheritance)

We can write the code of swing inside the main(), constructor or any other method.

Simple Java Swing Example

Let's see a simple swing example where we are creating one button and adding it on the

JFrame object inside the main() method.

File: FirstSwingExample.java

1. import javax.swing.*;

2. public class FirstSwingExample {

3. public static void main(String[] args) {

4. JFrame f=new JFrame();//creating instance of JFrame

5.

6. JButton b=new JButton("click");//creating instance of JButton

7. b.setBounds(130,100,100, 40);//x axis, y axis, width, height

8.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 105 -

9. f.add(b);//adding button in JFrame

10.

11. f.setSize(400,500);//400 width and 500 height

12. f.setLayout(null);//using no layout managers

13. f.setVisible(true);//making the frame visible

14. }

15. }

14. Write a Java Program to display the Details of a given Employee Using JDBC

 (DEC 2016)

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.SQLException;

import java.sql.*;

import java.io.*;

import java.net.*;

public class jdbcex {

 public static void main(String[] argv) {

System.out.println("-------- MySQL JDBC Connection Testing ------------");

Connection connection = null;

Statement st=null;

try {

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/employ","root",

"tiger");

 st = connection.createStatement();

} catch (Exception e) {

System.out.println("Where is your MySQL JDBC Driver?");

System.out.println("Connection Failed! Check output console");

}

System.out.println("MySQL JDBC Driver Registered!");

if (connection != null) {

System.out.println("You made it, take control your database now!");

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 106 -

} else {

System.out.println("Failed to make connection!");

}

try

{

int ch=' ';

System.out.println("\n1.Select Employee\n2.Add Employee\n3Update Emp\n4.Delete

Employee\n5.Exit\n");

while(ch<='5')

{

System.out.println("\nEnter your choice\n");

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

 ch=Integer.parseInt(br.readLine());

 switch (ch)

{

 case 1: ResultSet rs = st.executeQuery("select * from emp");

System.out.println("EMPLOYEE TABLE DETAILS");

System.out.println("Emp No \t Emp Name\n");

while(rs.next())

{

String s1= rs.getString("empno");

String s2=rs.getString("empname");

System.out.println(s1+"\t"+s2+"\n");

}

 break;

 case 2: System.out.println("\nADD DATA TO EMPLOYEE\n");

System.out.println("Enter the empno\n");

//int empno=Integer.parseInt(br.readLine());

String empno=br.readLine();

System.out.println("\nEnter the empname\n");

 String empname=br.readLine();

 String strsql="INSERT INTO emp(empno,empname) VALUES

 ('"+empno+"','"+empname+"')";

 st.executeUpdate(strsql);

System.out.println(strsql);

System.out.println("\nThe above data is Inserted.\n");

 break;

 case 3:System.out.println("Enter the empno you want to update\n");

//int empno=Integer.parseInt(br.readLine());

String no=br.readLine();

System.out.println("\nEnter the new empname\n");

String name=br.readLine();

 String strql="update emp set empname='"+name+"' where empno='"+no+"'";

st.executeUpdate(strql);

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 107 -

System.out.println(strql);

System.out.println("\nThe above data is updated.\n");

break;

 case 4: System.out.println("Enter the empno you want to delete\n");

//int empno=Integer.parseInt(br.readLine());

 no=br.readLine();

 //String sql="delete from emp where empno='3'";

String sql="delete from emp where empno='"+ no +"'";

st.executeUpdate(sql);

System.out.println(sql);

System.out.println("\nThe above data is deleted.\n") ;

break;

 case 5:

System.exit(0);

 break;

 default: System.out.println("choice");

break;

 }}

 connection.close();

 }

 catch (Exception e) {

 System.err.println("Got an exception! ");

 System.err.println(e.getMessage()); }

 }

}

15. Explain various methods of Httpservlet Class which are used to handle Http

 Request. (DEC 2016)

Provides an abstract class to be subclassed to create an HTTP servlet suitable for a Web site.

A subclass of HttpServlet must override at least one method, usually one of these:

 doGet, if the servlet supports HTTP GET requests

 doPost, for HTTP POST requests

 doPut, for HTTP PUT requests

 doDelete, for HTTP DELETE requests

 init and destroy, to manage resources that are held for the life of the servlet

 getServletInfo, which the servlet uses to provide information about itself

There's almost no reason to override the service method. service handles standard HTTP

requests by dispatching them to the handler methods for each HTTP request type

(the doXXX methods listed above).

Likewise, there's almost no reason to override the doOptions and doTrace methods.

Servlets typically run on multithreaded servers, so be aware that a servlet must handle

concurrent requests and be careful to synchronize access to shared resources. Shared

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 108 -

resources include in-memory data such as instance or class variables and external objects

such as files, database connections, and network connections.

doGet

protected void doGet(HttpServletRequest req,

HttpServletResponse resp)

throwsServletException,

 java.io.IOException

Called by the server (via the service method) to allow a servlet to handle a GET

request.

Overriding this method to support a GET request also automatically supports an

HTTP HEAD request. A HEAD request is a GET request that returns no body in the

response, only the request header fields.

When overriding this method, read the request data, write the response headers, get

the response's writer or output stream object, and finally, write the response data. It's

best to include content type and encoding. When using a PrintWriter object to return

the response, set the content type before accessing the PrintWriter object.

The servlet container must write the headers before committing the response, because

in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with

the ServletResponse.setContentLength(int) method), to allow the servlet container to

use a persistent connection to return its response to the client, improving performance.

The content length is automatically set if the entire response fits inside the response

buffer.

When using HTTP 1.1 chunked encoding (which means that the response has a

Transfer-Encoding header), do not set the Content-Length header.

The GET method should be safe, that is, without any side effects for which users are

held responsible. For example, most form queries have no side effects. If a client

request is intended to change stored data, the request should use some other HTTP

method.

The GET method should also be idempotent, meaning that it can be safely repeated.

Sometimes making a method safe also makes it idempotent. For example, repeating

queries is both safe and idempotent, but buying a product online or modifying data is

neither safe nor idempotent.

If the request is incorrectly formatted, doGet returns an HTTP "Bad Request"

message.

Parameters:
req - an HttpServletRequest object that contains the request the client has made of the

servlet

resp - an HttpServletResponse object that contains the response the servlet sends to

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletResponse.html#setContentLength(int)
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 109 -

the client

Throws:
java.io.IOException - if an input or output error is detected when the servlet handles

the GET request

ServletException - if the request for the GET could not be handled

See Also:
ServletResponse.setContentType(java.lang.String)

getLastModified

 protected long getLastModified(HttpServletRequest req)

Returns the time the HttpServletRequest object was last modified, in milliseconds

since midnight January 1, 1970 GMT. If the time is unknown, this method returns a

negative number (the default).

Servlets that support HTTP GET requests and can quickly determine their last

modification time should override this method. This makes browser and proxy caches

work more effectively, reducing the load on server and network resources.

Parameters:
req - the HttpServletRequest object that is sent to the servlet

Returns:
a long integer specifying the time the HttpServletRequest object was last modified, in

milliseconds since midnight, January 1, 1970 GMT, or -1 if the time is not known

doHead

protected void doHead(HttpServletRequest req,

HttpServletResponse resp)

throwsServletException,

 java.io.IOException

Receives an HTTP HEAD request from the protected service method and handles the

request. The client sends a HEAD request when it wants to see only the headers of a

response, such as Content-Type or Content-Length. The HTTP HEAD method counts

the output bytes in the response to set the Content-Length header accurately.

If you override this method, you can avoid computing the response body and just set

the response headers directly to improve performance. Make sure that

the doHead method you write is both safe and idempotent (that is, protects itself from

being called multiple times for one HTTP HEAD request).

If the HTTP HEAD request is incorrectly formatted, doHead returns an HTTP "Bad

Request" message.

Parameters:
req - the request object that is passed to the servlet

resp - the response object that the servlet uses to return the headers to the client.

Throws:
java.io.IOException - if an input or output error occurs

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletResponse.html#setContentType(java.lang.String)
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 110 -

ServletException - if the request for the HEAD could not be handled

doPost

protected void doPost(HttpServletRequest req,

HttpServletResponse resp)

throwsServletException,

 java.io.IOException

Called by the server (via the service method) to allow a servlet to handle a POST

request. The HTTP POST method allows the client to send data of unlimited length to

the Web server a single time and is useful when posting information such as credit

card numbers.

When overriding this method, read the request data, write the response headers, get

the response's writer or output stream object, and finally, write the response data. It's

best to include content type and encoding. When using a PrintWriter object to return

the response, set the content type before accessing the PrintWriter object.

The servlet container must write the headers before committing the response, because

in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with

the ServletResponse.setContentLength(int) method), to allow the servlet container to

use a persistent connection to return its response to the client, improving performance.

The content length is automatically set if the entire response fits inside the response

buffer.

When using HTTP 1.1 chunked encoding (which means that the response has a

Transfer-Encoding header), do not set the Content-Length header.

This method does not need to be either safe or idempotent. Operations requested

through POST can have side effects for which the user can be held accountable, for

example, updating stored data or buying items online.

If the HTTP POST request is incorrectly formatted, doPost returns an HTTP "Bad

Request" message.

Parameters:
req - an HttpServletRequest object that contains the request the client has made of the

servlet

resp - an HttpServletResponse object that contains the response the servlet sends to

the client

Throws:
java.io.IOException - if an input or output error is detected when the servlet handles

the request

ServletException - if the request for the POST could not be handled

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletResponse.html#setContentLength(int)
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 111 -

doPut

protected void doPut(HttpServletRequest req,

HttpServletResponse resp)

throwsServletException,

 java.io.IOException

Called by the server (via the service method) to allow a servlet to handle a PUT

request. The PUT operation allows a client to place a file on the server and is similar

to sending a file by FTP.

When overriding this method, leave intact any content headers sent with the request

(including Content-Length, Content-Type, Content-Transfer-Encoding, Content-

Encoding, Content-Base, Content-Language, Content-Location, Content-MD5, and

Content-Range). If your method cannot handle a content header, it must issue an error

message (HTTP 501 - Not Implemented) and discard the request. For more

information on HTTP 1.1, see RFC 2616 .

This method does not need to be either safe or idempotent. Operations

that doPut performs can have side effects for which the user can be held accountable.

When using this method, it may be useful to save a copy of the affected URL in

temporary storage.

If the HTTP PUT request is incorrectly formatted, doPut returns an HTTP "Bad

Request" message.

Parameters:
req - the HttpServletRequest object that contains the request the client made of the

servlet

resp - the HttpServletResponse object that contains the response the servlet returns to

the client

Throws:
java.io.IOException - if an input or output error occurs while the servlet is handling

the PUT request

ServletException - if the request for the PUT cannot be handled

doDelete

protected void doDelete(HttpServletRequest req,

HttpServletResponse resp)

throwsServletException,

 java.io.IOException

Called by the server (via the service method) to allow a servlet to handle a DELETE

request. The DELETE operation allows a client to remove a document or Web page

from the server.

This method does not need to be either safe or idempotent. Operations requested

through DELETE can have side effects for which users can be held accountable.

When using this method, it may be useful to save a copy of the affected URL in

temporary storage.

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 112 -

If the HTTP DELETE request is incorrectly formatted, doDelete returns an HTTP

"Bad Request" message.

Parameters:
req - the HttpServletRequest object that contains the request the client made of the

servlet

resp - the HttpServletResponse object that contains the response the servlet returns to

the client

Throws:
java.io.IOException - if an input or output error occurs while the servlet is handling

the DELETE request

ServletException - if the request for the DELETE cannot be handled

doOptions

protected void doOptions(HttpServletRequest req,

HttpServletResponse resp)

throwsServletException,

 java.io.IOException

Called by the server (via the service method) to allow a servlet to handle a OPTIONS

request. The OPTIONS request determines which HTTP methods the server supports

and returns an appropriate header. For example, if a servlet overrides doGet, this

method returns the following header:

Allow: GET, HEAD, TRACE, OPTIONS

There's no need to override this method unless the servlet implements new HTTP

methods, beyond those implemented by HTTP 1.1.

Parameters:
req - the HttpServletRequest object that contains the request the client made of the

servlet

resp - the HttpServletResponse object that contains the response the servlet returns to

the client

Throws:
java.io.IOException - if an input or output error occurs while the servlet is handling

the OPTIONS request

ServletException - if the request for the OPTIONS cannot be handled

doTrace

protected void doTrace(HttpServletRequest req,

HttpServletResponse resp)

throwsServletException,

 java.io.IOException

Called by the server (via the service method) to allow a servlet to handle a TRACE

request. A TRACE returns the headers sent with the TRACE request to the client, so

that they can be used in debugging. There's no need to override this method.

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 113 -

Parameters:
req - the HttpServletRequest object that contains the request the client made of the

servlet

resp - the HttpServletResponse object that contains the response the servlet returns to

the client

Throws:
java.io.IOException - if an input or output error occurs while the servlet is handling

the TRACE request

ServletException - if the request for the TRACE cannot be handled

Service

protected void service(HttpServletRequest req,

HttpServletResponse resp)

throwsServletException,

 java.io.IOException

Receives standard HTTP requests from the public service method and dispatches

them to the doXXX methods defined in this class. This method is an HTTP-specific

version of theServlet.service(javax.servlet.ServletRequest,

javax.servlet.ServletResponse) method. There's no need to override this method.

Parameters:
req - the HttpServletRequest object that contains the request the client made of the

servlet

resp - the HttpServletResponse object that contains the response the servlet returns to

the client

Throws:
java.io.IOException - if an input or output error occurs while the servlet is handling

the HTTP request

ServletException - if the HTTP request cannot be handled

Service

public void service(ServletRequest req,

ServletResponse res)

throwsServletException,

 java.io.IOException

Dispatches client requests to the protected service method. There's no need to override

this method.

Specified by:
service in interface Servlet

Specified by:
service in class GenericServlet

Parameters:
req - the HttpServletRequest object that contains the request the client made of the

servlet

res - the HttpServletResponse object that contains the response the servlet returns to

the client

Throws:

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/Servlet.html#service(javax.servlet.ServletRequest, javax.servlet.ServletResponse)
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/Servlet.html#service(javax.servlet.ServletRequest, javax.servlet.ServletResponse)
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletResponse.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/Servlet.html#service(javax.servlet.ServletRequest, javax.servlet.ServletResponse)
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/Servlet.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/GenericServlet.html#service(javax.servlet.ServletRequest, javax.servlet.ServletResponse)
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/GenericServlet.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletResponse.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 114 -

java.io.IOException - if an input or output error occurs while the servlet is handling

the HTTP request

ServletException - if the HTTP request cannot be handled

16. Explain Jlist And Jtabbed Pane Components.(DEC 2016)

A tabbed pane is a component that appears as a group of folders in a file cabinet. Each folder

has a title. When a user selects a folder, its contents become visible. Only one of the folders

may be selected at a time. Tabbed panes are commonly used for setting configuration options.

Tabbed panes are encapsulated by the JTabbedPane class, which extends JComponent. We

will use its default constructor. Tabs are defined via the following method:

void addTab(String str, Component comp)

Here, str is the title for the tab, and comp is the component that should be added to the tab.

Typically, a JPanel or a subclass of it is added.

The general procedure to use a tabbed pane in an applet is outlined here:

1. Create a JTabbedPane object.

2. Call addTab() to add a tab to the pane. (The arguments to this method define the title of

 the tab and the component it contains.)

3. Repeat step 2 for each tab.

4. Add the tabbed pane to the content pane of the applet.

 Demonstration of Tabbed Panes.

Solution: import javax.swing.*; /* <applet code="JTabbedPaneDemo" width=400

height=100></applet> */

public class JTabbedPaneDemo extends JApplet

{

public void init()

 {

JTabbedPane jtp = new JTabbedPane();

jtp.addTab("Cities", new CitiesPanel());

jtp.addTab("Colors", new ColorsPanel());

jtp.addTab("Flavors", new FlavorsPanel());

getContentPane().add(jtp);

}

}

class CitiesPanel extends JPanel

{

public CitiesPanel()

 {

JButton b1 = new JButton("New York"); add(b1);

 JButton b2 = new JButton("London");

add(b2);

 JButton b3 = new JButton("Hong Kong");

add(b3);

JButton b4 = new JButton("Tokyo");

add(b4);

 }

}

class ColorsPanel extends JPanel

{

public ColorsPanel()

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/ServletException.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 115 -

{

JCheckBox cb1 = new JCheckBox("Red");

add(cb1);

 JCheckBox cb2 = new JCheckBox("Green");

add(cb2); JCheckBox cb3 = new JCheckBox("Blue");

add(cb3);

 }

}

class FlavorsPanel extends JPanel

 {

public FlavorsPanel()

{

 JComboBox jcb = new JComboBox();

jcb.addItem("Vanilla"); jcb.addItem("Chocolate");

jcb.addItem("Strawberry"); add(jcb);

 }

 }

UNIT IV

1. What is hibernate? Explain about the architecture of the hibernate with neat diagram

 with features

Hibernate Architecture

The Hibernate architecture includes many objects persistent object, session factory,

transaction factory, connection factory, session, transaction etc.

There are 4 layers in hibernate architecture java application layer, hibernate framework layer,

backhand api layer and database layer.Let's see the diagram of hibernate architecture:

This is the high level architecture of Hibernate with mapping file and configuration file.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 116 -

Hibernate framework uses many objects session factory, session, transaction etc. alongwith

existing Java API such as JDBC (Java Database Connectivity), JTA (Java Transaction API)

and JNDI (Java Naming Directory Interface).

Elements of Hibernate Architecture

For creating the first hibernate application, we must know the elements of Hibernate

architecture. They are as follows:

SessionFactory

The SessionFactory is a factory of session and client of ConnectionProvider. It holds second

level cache (optional) of data. The org.hibernate.SessionFactory interface provides factory

method to get the object of Session.

Session

The session object provides an interface between the application and data stored in the

database. It is a short-lived object and wraps the JDBC connection. It is factory of

Transaction, Query and Criteria. It holds a first-level cache (mandatory) of data. The

org.hibernate.Session interface provides methods to insert, update and delete the object. It

also provides factory methods for Transaction, Query and Criteria.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 117 -

Transaction

The transaction object specifies the atomic unit of work. It is optional. The

org.hibernate.Transaction interface provides methods for transaction management.

ConnectionProvider

It is a factory of JDBC connections. It abstracts the application from DriverManager or

DataSource. It is optional.

TransactionFactory

It is a factory of Transaction. It is optional.

2. Explain tiered application development in JAVA.

Overview of Enterprise Applications

The Java EE platform is designed to help developers create large-scale, multi-tiered, scalable,

reliable, and secure network applications. A shorthand name for such applications is

“enterprise applications,” so called because these applications are designed to solve the

problems encountered by large enterprises. Enterprise applications are not only useful for

large corporations, agencies, and governments, however. The benefits of an enterprise

application are helpful, even essential, for individual developers and small organizations in an

increasingly networked world.

The features that make enterprise applications powerful, like security and reliability, often

make these applications complex. The Java EE platform is designed to reduce the complexity

of enterprise application development by providing a development model, API, and runtime

environment that allows developers to concentrate on functionality.

Tiered Applications

In a multi-tiered application, the functionality of the application is separated into isolated

functional areas, called tiers. Typically, multi-tiered applications have a client tier, a middle

tier, and a data tier (often called the enterprise information systems tier). The client tier

consists of a client program that makes requests to the middle tier. The middle tier's business

functions handle client requests and process application data, storing it in a permanent

datastore in the data tier.

Java EE application development concentrates on the middle tier to make enterprise

application management easier, more robust, and more secure.

The Client Tier

The client tier consists of application clients that access a Java EE server and that are usually

located on a different machine from the server. The clients make requests to the server. The

server processes the requests and returns a response back to the client. Many different types

of applications can be Java EE clients, and they are not always, or even often Java

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 118 -

applications. Clients can be a web browser, a standalone application, or other servers, and

they run on a different machine from the Java EE server.

The Web Tier

The web tier consists of components that handle the interaction between clients and the

business tier. Its primary tasks are the following:

 Dynamically generate content in various formats for the client.

 Collect input from users of the client interface and return appropriate results from

 the components in the business tier.

 Control the flow of screens or pages on the client.

 Maintain the state of data for a user's session.

 Perform some basic logic and hold some data temporarily in JavaBeans

 components.

Java EE Technologies Used in the Web Tier

The following Java EE technologies are used in the web tier in Java EE applications.

Table 1.Web-Tier Java EE Technologies

Technology Purpose

Servlets Java programming language classes that dynamically process requests

and construct responses, usually for HTML pages

JavaServer Faces

technology

A user-interface component framework for web applications that allows

you to include UI components (such as fields and buttons) on a page,

convert and validate UI component data, save UI component data to

server-side data stores, and maintain component state.

JavaServer Faces

Facelets

technology

Facelets applications are a type of JavaServer Faces applications that use

XHTML pages rather than JSP pages.

Expression

Language

A set of standard tags used in JSP and Facelets pages to refer to Java EE

components.

JavaServer Pages

(JSP)

Text-based documents that are compiled into servlets and define how

dynamic content can be added to static pages, such as HTML pages.

JavaServer Pages

Standard Tag

Library

A tag library that encapsulates core functionality common to JSP pages

JavaBeans

Components

Objects that act as temporary data stores for the pages of an application

The Business Tier

The business tier consists of components that provide the business logic for an application.

Business logic is code that provides functionality to a particular business domain, like the

financial industry, or an e-commerce site. In a properly designed enterprise application, the

core functionality exists in the business tier components.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 119 -

Java EE Technologies Used in the Business Tier

The following Java EE technologies are used in the business tier in Java EE applications:

Table 2 Business Tier Java EE Technologies

Technology Description

Enterprise

JavaBeans

(enterprise bean)

components

Enterprise beans are managed components that encapsulate the core

functionality of an application.

JAX-RS RESTful

web services

An API for creating web services that respond to HTTP methods (for

example GET or POST methods). JAX-RS web services are developed

according to the principles of REST, or representational state transfer.

JAX-WS web

service endpoints

An API for creating and consuming SOAP web services.

Java Persistence

API entities

An API for accessing data in underlying data stores and mapping that

data to Java programming language objects.

Java EE managed

beans

Managed components that may provide the business logic of an

application, but do not require the transactional or security features of

enterprise beans.

The Enterprise Information Systems Tier

The enterprise information systems (EIS) tier consists of database servers, enterprise resource

planning systems, and other legacy data sources, like mainframes. These resources typically

are located on a separate machine than the Java EE server, and are accessed by components

on the business tier.

Java EE Technologies Used in the EIS Tier

The following Java EE technologies are used to access the EIS tier in Java EE applications:

Table 3. EIS Tier Java EE Technologies

Technology Description

The Java Database

Connectivity API

(JDBC)

A low-level API for accessing and retrieving data from underlying

data stores. A common use of JDBC is to make SQL queries on a

particular database.

The Java Persistence

API

An API for accessing data in underlying data stores and mapping that

data to Java programming language objects. The Java Persistence API

is a much higher-level API than JDBC, and hides the complexity of

JDBC from the user.

The Java EE

Connector

Architecture

An API for connecting to other enterprise resources, like enterprise

resource planning or customer management system software.

The Java Transaction An API for defining and managing transactions, including distributed

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 120 -

API (JTA) transactions or transactions that cross multiple underlying data

sources.

3. Explain how the JAVA servers are used in developing an application.

The basic steps involved in the creation of a server application are summarized in the

following table:

Step 1: Compile the OMG IDL File for the Server Application

Step 2: Write the Methods That Implement Each Interface's Operations

Step 3: Create the Server Object

Step 4: Compile the Java Source Files

Step 5: Define the Object Activation and Transaction Policies

Step 6: Verify the Environment Variables

Step 7: Finish the Server Description File

Step 8: Deploy the Server Application

Step 1: Compile the OMG IDL File for the Server Application

The basic structure of the client and server portions of the application that runs in the

WebLogic Enterprise domain are determined by statements in the application's OMG IDL

file. When you compile your application's OMG IDL file, the m3idltojava compiler

generates many files, some of which are shown in the following diagram:

Step 2: Write the Methods That Implement Each Interface's Operations

https://docs.oracle.com/cd/E13211_01/wle/jcreserv/maksrv.htm#1023108
https://docs.oracle.com/cd/E13211_01/wle/jcreserv/maksrv.htm#1023186
https://docs.oracle.com/cd/E13211_01/wle/jcreserv/maksrv.htm#1023264
https://docs.oracle.com/cd/E13211_01/wle/jcreserv/maksrv.htm#1023350
https://docs.oracle.com/cd/E13211_01/wle/jcreserv/maksrv.htm#1023353
https://docs.oracle.com/cd/E13211_01/wle/jcreserv/maksrv.htm#1023443
https://docs.oracle.com/cd/E13211_01/wle/jcreserv/maksrv.htm#1023485
https://docs.oracle.com/cd/E13211_01/wle/jcreserv/maksrv.htm#1023515

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 121 -

As the server application programmer, your task is to write the methods that implement

the operations for each interface you have defined in your application's OMG IDL file.

The Java object implementation file contains:

 Method declarations for each operation specified in the OMG IDL file

 Your application's business logic

 Constructors for each interface implementation (implementing these is optional)

 Optionally,

the com.beasys.Tobj_Servant.activate_object and com.beasys.Tobj_Servant.deactivat

e_object methods

Within the activate_object and deactivate_object methods, you write code that

performs any particular steps related to activating or deactivating an object. This

includes reading and writing the object's durable state from and to disk, respectively.

Creating an Object Implementation File

Although you can create your server application's object implementation file manually,

you can save time and effort by using the m3idltojava compiler to generate a file for each

interface. The interface.java file contains Java signatures for the methods that implement

each of the operations defined for your application's interfaces.

To take advantage of this shortcut, use the following steps:

1. Create a copy of the interface.java file, which was created when you compiled your

OMG IDL file with the m3idltojava command, and name it interfaceImpl.java. For

example, using the Bankapp sample file names, you would copy Teller.java to a new

file named TellerImpl.java.

2. Open the new interfaceImpl.java file. For example, in the previously

unedited TellerImpl.java file, we changed:

public interface Teller extends org.omg.CORBA.Object {

to:

public class TellerImpl extends Bankapp._TellerImplBase {

Bankapp._TellerImplBase is the class defined in the server skeleton file that was

generated by the m3idltojava compiler for the Teller object.

3. For each method in TellerImpl.java, we added the public keyword. For example, we

changed:

float deposit(int accountID, float amount)

to:

public float deposit(int accountID, float amount)

Repeat this procedure to create interfaceImpl.java object implementation files for your

interfaces, and add the business logic for your Java server application.

Step 3: Create the Server Object

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 122 -

In Java, you use a Server object to initialize and release the server application. You

implement this Server object by creating a new class that derives from

the com.beasys.Tobj.Server class and overrides the initialize and release methods. In the

server application code, you can also write a public default constructor.

For example:

import com.beasys.Tobj.*;

/**

 * Provides code to initialize and stop the server invocation.

 * BankAppServerImpl is specified in the BankApp.xml input file

 * as the name of the Server object.

 */

public class BankAppServerImpl

 extends com.beasys.Tobj.Server {

 public boolean initialize(string[] args)

 throws com.beasys.TobjS.InitializeFailed;

 public boolean release()

 throws com.beasys.TobjS.ReleaseFailed;

}

In the XML-coded Server Description File, which you process with

the buildjavaserver command, you identify the name of the Server object.

The create_servant method, used in the C++ environment of WebLogic Enterprise, is not

used in the Java environment. In Java, objects are created dynamically, without prior

knowledge of the classes being used. In the Java environment of WebLogic Enterprise, a

servant factory is used to retrieve an implementation class, given the interface repository

ID. This information is stored in a server descriptor file created by

the buildjavaserver command for each implementation class. When a method request is

received, and no servant is available for the interface, the servant factory looks up the

interface and creates an object of the appropriate implementation class.

This collection of the object's implementation and data compose the run-time, active

instance of the CORBA object.

When your Java server application starts, the TP Framework creates the Server object

specified in the XML file. Then, the TP Framework invokes the initialize method. If the

method returns true, the server application starts. If the method throws the

com.beasys.TobjS.InitializeFailed exception, or returns false, the server application does

not start.

When the server application shuts down, the TP Framework invokes the release method on

the Server object.

Any command-line options specified in the CLOPT parameter for your specific server

application in the SERVERS section of the WebLogic Enterprise

domain's UBBCONFIG file are passed to the public boolean initialize(string[] args)

operation as args. For more information about passing arguments to the server application,

see the Administration Guide. For examples of passing arguments to the server

application, see the Guide to the Java Sample Applications.

Within the initialize method, you can include code that does the following, if applicable:

 Creates and registers factories

https://docs.oracle.com/cd/E13211_01/wle/admin/index.htm
https://docs.oracle.com/cd/E13211_01/wle/jsamples/index.htm

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 123 -

 Allocates any machine resources

 Initializes any global variables needed by the server application

 Opens the databases used by the server application

 Opens the XA resource manager

 Step 4: Compile the Java Source Files

 After you have implemented your application's objects and the Server object, use

the javac compiler to create the bytecodes for all the class files that comprise your

application. This set of files includes the *.java source files generated by

the m3idltojava compiler, plus the object implementation files and server class file

that you created.

Step 5: Define the Object Activation and Transaction Policies

As stated in the section Managing Object State, you determine what events cause an object

to be deactivated by assigning object activation policies, transaction policies, and,

optionally, using the application-controlled deactivation feature.

You specify default object activation and transaction policies in the Server Description

File, which is expressed in XML, and you implement application-controlled deactivation

via the com.beasys.Tobj.TP.deactivateEnable method in your Java code.

Step 6: Verify the Environment Variables

Several environment variables are defined by the WebLogic Enterprise software when the

product is installed, but it is always a good idea to verify the following key environment

variables prior to the buildjavaserver compilation step. The environment variables are:

 JAVA_HOME, the directory where the JDK is installed

 CLASSPATH, which must point to:

o The location of the WebLogic Enterprise JAR archive, which contains all the

class files

o The location of the WebLogic Enterprise message catalogs

 TUXDIR, the directory where the WebLogic Enterprise software is installed

Step 7: Finish the Server Description File

 After you have compiled the Java source code and defined the environment variables,

enter additional information in the XML-based Server Description File, and then

supply the Server Description File as input to the buildjavaserver command.

 Edit your Server Description File to identify the Server object and the name of the file

that will contain your Java application's server descriptor. This portion of the XML

file is called the server declaration; its location in the file is immediately after the

prolog. The required prolog contains the following two lines:

 <?xml version="1.0"?>

<!DOCTYPE M3-SERVER SYSTEM "m3.dtd">

Step 8: Deploy the Server Application

You or the system administrator deploy the WebLogic Enterprise server application by

using the procedure summarized in this section. For complete details on building and

https://docs.oracle.com/cd/E13211_01/wle/jcreserv/concepts.htm#1022507

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 124 -

deploying the WebLogic Enterprise Bankapp sample application, see the Guide to the Java

Sample Applications.

To deploy the server application:

1. Place the server application JAR file in the directory listed in APPDIR. On NT

systems, this directory must be on a local drive (not a networked drive). On Solaris,

the directory can be local or remote.

2. If your Java server application uses an XA-compliant resource manager such as

Oracle, you must build an XA-specific version of the JavaServer by using

the buildXAJS command at a system prompt. Provide as input to the command the

resource manager that is associated with the server. In your

application's UBBCONFIG file, you also must use the JavaServerXA element in

place ofJavaServer to associate the XA resource manager with a specified server

group. See the Commands, System Process, and MIB Reference for details about

the buildXAJS command.

3. Create the application's configuration file, also known as the UBBCONFIG file, in a

text editor. Include the parameters to start JavaServer or JavaServerXA.

4. Explain the containers in JAVA with an illustration.

A container is a component which can contain other components inside itself. It is

also an instance of a subclass

of java.awt.Container. java.awt.Container extends java.awt.Component so containers

are themselves components.

In general components are contained in a container. An applet is a container. Other

containers include windows, frames, dialogs, and panels. Containers may contain

other containers.

Every container has a LayoutManager that determines how different components are

positioned within the container.

In short containers contain components. Components are positioned inside the

container according to a LayoutManager. Since containers are themselves

components, containers may by placed inside other containers. This is really a lot

simpler than it sounds. Applets provide a ready-made container and a

default LayoutManager, a FlowLayout.

Container Types

The deployment process installs Java EE application components in the Java EE containers as

illustrated in the following figure.

https://docs.oracle.com/cd/E13211_01/wle/jsamples/index.htm
https://docs.oracle.com/cd/E13211_01/wle/jsamples/index.htm
https://docs.oracle.com/cd/E13211_01/wle/ref/index.htm

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 125 -

 Java EE server: The runtime portion of a Java EE product. A Java EE server

 provides EJB and web containers.

 Enterprise JavaBeans (EJB) container: Manages the execution of enterprise

 beans for Java EE applications. Enterprise beans and their container run on the

 Java EE server.

 Web container: Manages the execution of JSP page and servlet components for

 Java EE applications. Web components and their container run on the Java EE

 server.

 Application client container: Manages the execution of application client

 components. Application clients and their container run on the client.

 Applet container: Manages the execution of applets. Consists of a web browser

 and Java Plug-in running on the client together.

5. Discuss about the play framework used in enterprise application development.

The Play framework is a clean option to bloated Enterprise Java stacks. It concentrates on

designers’ profit and targets tranquil architectures. Play framework is an immaculate friendly

for nimble programming improvement. The Play framework’s objective is to provide web

applications improvement while staying with Java.

A Java framework without Pain

Play is an unadulterated Java framework and permits you to keep your favoured improvement

on devices and libraries. On the off chance that you as of now utilize Java as an improvement

stage you don’t have to switch to an alternate dialect, an alternate IDE and different libraries.

Simply switch to a more beneficial Java environment.

Fix the bug and hit Reload

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 126 -

The Java stage is scandalous for its low benefit, primarily because of rehashed and repetitive

order bundle send cycles. That is the reason we re-examined the advancement cycle to make

creating with play an effective methodology.

HTTP to code mapping

In case you’re as of now utilizing an alternate Java Web framework like the Servlet API or

the Struts framework, you have officially utilized a dynamic perspective of the HTTP

convention with weird Java APIs and ideas. We think in an unexpected way. A Web

application framework ought to provide for you full, direct get to HTTP and its ideas. This is

a basic contrast in the middle of Play and other Java web application frameworks. HTTP, the

Request/Response design, the REST compositional style, substance sort transaction, URI are

all significant ideas for the play framework.

For example, tying a URI example to a Java call is only one line:

GET /customers/{id} Clients.show

On the off chance that AJAX, REST and overseeing again/forward development between site

pages are a percentage of the issues you confront in your normal web advancement, simply

try play out.

Full Stack Application Framework

The play framework was at first enlivened by our own particular Java applications. It has all

the devices required to make a current web application:

 Relational Database help through JDBC.

 Object-Relational Mapping utilizing Hibernate (with the JPA API).

 Integrated Cache help, with simple utilization of the dispersed memory stored

 framework if necessary.

 Straightforward Web administrations utilization either in JSON or XML.

 OpenId help for conveyed verification.

 Image control API.

The particular construction modeling gives you a chance to join together a web application

with numerous others. Because of re-use of modules, you can use your java code, templates

and static assets, for example, Javascript and CSS records in a straightforward manner.

The request life cycle

The play structure is completely stateless and just Request/Response situated. All HTTP

Requests take after the same way:

 A HTTP Request is gotten by the structure.

 The Router part tries to discover the most particular course ready to acknowledge

 this request. The comparing activity strategy is then summoned.

 The application code is executed.

 In the event that a complex view needs to be produced, a layout document is

 rendered.

The after-effect of the activity technique (HTTP Response code, Content) is then composed

as a HTTP Response. This chart outlines the HTTP Request way:

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 127 -

The Standard Application Format

The format of a play application is standardized to keep things as straightforward as could be

allowed.

(A) The application directory

This directory holds all executable antiquities: Java source code and perspectives layouts.

There are three standard bundles in the application directory, one for each one layer of the

MVC structural example. You container obviously include your own particular bundles like

for instance an utils packages.

Also, the perspectives bundle is further composed into sub-bundles:

 Tags, has application labels, e.g. reusable bits of layouts.

 One sees organizer for every Controller, by meeting layouts identified with every

 Controller are put away in their own particular sub-bundle.

http://www.j2eebrain.com/wp-content/uploads/Play-framework.png

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 128 -

(B) The open directory

Assets put away in general society directory are static possessions and are served

straightforwardly by the Web server.

This directory is part into three standard sub-registries: for pictures, CSS templates and

Javascript records. You ought to attempt to arrange your static holdings like this to keep all

play applications predictable.

(C) The conf directory

The conf directory holds all arrangement documents for the application.

There are two obliged arrangements documents:

 application.conf, the primary arrangement document for the application. It holds

 standard design alternatives.

 routes, the courses definition document.

6. Create a web application using JAVA servlets.

Why we need Servlet and JSPs?

Web servers are good for static contents HTML pages but they don’t know how to generate

dynamic content or how to save data into databases, so we need another tool that we can use

to generate dynamic content. There are several programming languages for dynamic content

like PHP, Python, Ruby on Rails, Java Servlets and JSPs.

Java Servlet and JSPs are server side technologies to extend the capability of web servers by

providing support for dynamic response and data persistence.

Java Web Development

First Web Application with Servlet and JSP

We will use “Eclipse IDE for Java EE Developers” for creating our first servlet application.

Since servlet is a server side technology, we will need a web container that supports Servlet

technology, so we will use Apache Tomcat server. For ease of development, we can add

configure Tomcat with Eclipse, it helps in easy deployment and running applications.

Go to Eclipse Preference and select Server Runtime Environments and select the version of

your tomcat server, mine is Tomcat 7.

Provide the apache tomcat directory location and JRE information to add the runtime

environment.

Now go to the Servers view and create a new server like below image pointing to the above

added runtime environment.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 129 -

Now we are ready with our setup to create first servlet and run it on tomcat server.

Select File > New > Dynamic Web Project and use below image to provide runtime as the

server we added in last step and module version as 3.0 to create our servlet using Servlet 3.0

specs.

You can directly click Finish button to create the project or you can click on Next buttons to

check for other options.

Now select File > New > Servlet and use below image to create our first servlet. Again we

can click finish or we can check other options through next button.

When we click on Finish button, it generates our Servlet skeleton code, so we don’t need to

type in all the different methods and imports in servlet and saves us time.

Now we will add some HTML with dynamic data code in doGet() method that will be

invoked for HTTP GET request. Our first servlet looks like below.

package com.journaldev.first;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Date;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebInitParam;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

/**

 * Servlet implementation class FirstServlet

 */

@WebServlet(description = "My First Servlet", urlPatterns = { "/FirstServlet" ,

"/FirstServlet.do"}, initParams =

{@WebInitParam(name="id",value="1"),@WebInitParam(name="name",value="pankaj")})

public class FirstServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 public static final String HTML_START="<html><body>";

 public static final String HTML_END="</body></html>";

 /**

 * @see HttpServlet#HttpServlet()

 */

 public FirstServlet() {

 super();

 // TODO Auto-generated constructor stub

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 130 -

 }

 /**

 * @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse

response)

 */

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 PrintWriter out = response.getWriter();

 Date date = new Date();

 out.println(HTML_START + "<h2>Hi

There!</h2>
<h3>Date="+date +"</h3>"+HTML_END);

 }

 /**

 * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse

response)

 */

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

 // TODO Auto-generated method stub

 }

}

Before Servlet 3, we need to provide the url pattern information in web application

deployment descriptor but servlet 3.0 uses java annotations that is easy to understand and

chances of errors are less.

Now chose Run > Run on Server option from servlet editor window

After clicking finish, browser will open in Eclipse and we get following HTML page.

You can refresh it to check that Date is dynamic and keeps on changing, you can open it

outside of Eclipse also in any other browser.

So servlet is used to generate HTML and send it in response, if you will look into the doGet()

implementation, we are actually creating an HTML document as writing it in response

PrintWriter object and we are adding dynamic information where we need it.

It’s good for start but if the response is huge with lot of dynamic data, it’s error prone and

hard to read and maintain. This is the primary reason for introduction of JSPs.

JSP is also server side technology and it’s like HTML with additional features to add

dynamic content where we need it.

JSPs are good for presentation because it’s easy to write because it’s like HTML. Here is our

first JSP program that does the same thing like above servlet.

If we run above JSP, we get output like below image.

https://www.journaldev.com/721/java-annotations

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 131 -

7. Explain how the Web frameworks are used in JAVA application development.

Java Frameworks are nothing but large bodies of predefined Java code which you can apply

to your own code to solve your problem in a specific domain. You can use a framework by

calling its methods, inheritance, by providing “callbacks”, listeners, or other implementations

of the Observer pattern.

How Frameworks came into existence?

Late in 1990’s the applications were widely developed using JEE standards. The premise of

J2EE was multi-platform/ multi-vendor, if you can code according to the J2EE standards you

can deploy your application on any J2EE application server irrespective of platform. Running

your code on any application server provides you with many benefits like – transaction

management, messaging, mailing, directory interface etc. But as nothing comes easy in this

world, working with J2EE also had some difficulties.

 Very Complex: Enterprise Java Bean was developed for reducing the complexity in

J2EE applications. But it didn’t succeed in its aim in implementation. Reason

behind it is that, while writing a component it is required to write a set of XML

files, home interfaces, remote/ local interfaces, etc.

 ‘look-up’ problem: Whenever a component depended upon another component, it

had to look up for the components it depended upon by itself. This component

‘look-up’ happens only by name, so the name of the dependency was hard-coded in

the component.

 Heavy weight: As all features like clustering, remote controlling, etc., were

supported, you have to configure them, regardless of the fact that you need them or

not. This will make your applications bloated.

Advantages of using Java Frameworks

 Efficiency: Tasks that generally take you hours and hundreds of lines of code to

compose, can now be done in minutes with pre-built functions. Development

becomes a lot easier, so if it’s much easier, it’s much quicker, and subsequently

more effective.

 Security: An extensively used framework will generally have large security

applications. The big benefit is the neighborhood behind that framework, where

users usually end up being long-lasting testers. If you find a vulnerability or a

security hole, you can go to the framework’s web site and let them know so that it

can be fixed.

 Expense: Most popular structures are complimentary and so it helps the developer

to code faster. If the coding is done faster the expense for the final client will

certainly be smaller in every aspect, be it time or effort. Moreover the maintenance

cost is also low.

 Support: As any other distributed tool, a framework generally includes documents,

a support group or large-community online forums where you can acquire quick

responses.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 132 -

8. Describe about the role of spring frameworks in enterprise application development with

 an example.

Spring is the most popular application development framework for enterprise Java. Millions

of developers around the world use Spring Framework to create high performing, easily

testable, and reusable code.

Spring framework is an open source Java platform. It was initially written by Rod Johnson

and was first released under the Apache 2.0 license in June 2003.

Spring is lightweight when it comes to size and transparency. The basic version of Spring

framework is around 2MB.

The core features of the Spring Framework can be used in developing any Java application,

but there are extensions for building web applications on top of the Java EE platform. Spring

framework targets to make J2EE development easier to use and promotes good

programming practices by enabling a POJO-based programming model.

Benefits of Using the Spring Framework

Following is the list of few of the great benefits of using Spring Framework −

 Spring enables developers to develop enterprise-class applications using POJOs. The

benefit of using only POJOs is that you do not need an EJB container product such

as an application server but you have the option of using only a robust servlet

container such as Tomcat or some commercial product.

 Spring is organized in a modular fashion. Even though the number of packages and

classes are substantial, you have to worry only about the ones you need and ignore

the rest.

 Spring does not reinvent the wheel, instead it truly makes use of some of the existing

technologies like several ORM frameworks, logging frameworks, JEE, Quartz and

JDK timers, and other view technologies.

 Testing an application written with Spring is simple because environment-dependent

code is moved into this framework. Furthermore, by using JavaBeanstyle POJOs, it

becomes easier to use dependency injection for injecting test data.

 Spring's web framework is a well-designed web MVC framework, which provides a

great alternative to web frameworks such as Struts or other over-engineered or less

popular web frameworks.

 Spring provides a convenient API to translate technology-specific exceptions (thrown

by JDBC, Hibernate, or JDO, for example) into consistent, unchecked exceptions.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 133 -

 Lightweight IoC containers tend to be lightweight, especially when compared to EJB

containers, for example. This is beneficial for developing and deploying applications

on computers with limited memory and CPU resources.

 Spring provides a consistent transaction management interface that can scale down to

a local transaction (using a single database, for example) and scale up to global

transactions (using JTA, for example).

 Dependency Injection (DI)

 The technology that Spring is most identified with is the Dependency Injection

(DI) flavor of Inversion of Control. The Inversion of Control (IoC) is a general

concept, and it can be expressed in many different ways. Dependency Injection is

merely one concrete example of Inversion of Control.

 When writing a complex Java application, application classes should be as

independent as possible of other Java classes to increase the possibility to reuse these

classes and to test them independently of other classes while unit testing. Dependency

Injection helps in gluing these classes together and at the same time keeping them

independent.

 What is dependency injection exactly? Let's look at these two words separately. Here

the dependency part translates into an association between two classes. For example,

class A is dependent of class B. Now, let's look at the second part, injection. All this

means is, class B will get injected into class A by the IoC.

 Dependency injection can happen in the way of passing parameters to the constructor

or by post-construction using setter methods. As Dependency Injection is the heart of

Spring Framework, we will explain this concept in a separate chapter with relevant

example.

 Aspect Oriented Programming (AOP)

 One of the key components of Spring is the Aspect Oriented Programming

(AOP) framework. The functions that span multiple points of an application are

called cross-cutting concerns and these cross-cutting concerns are conceptually

separate from the application's business logic. There are various common good

examples of aspects including logging, declarative transactions, security, caching,

etc.

 The key unit of modularity in OOP is the class, whereas in AOP the unit of

modularity is the aspect. DI helps you decouple your application objects from each

other, while AOP helps you decouple cross-cutting concerns from the objects that

they affect.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 134 -

 The AOP module of Spring Framework provides an aspect-oriented programming

implementation allowing you to define method-interceptors and pointcuts to cleanly

decouple code that implements functionality that should be separated.

Spring could potentially be a one-stop shop for all your enterprise applications. However,

Spring is modular, allowing you to pick and choose which modules are applicable to you,

without having to bring in the rest. The following section provides details about all the

modules available in Spring Framework.

The Spring Framework provides about 20 modules which can be used based on an

application requirement.

Core Container

The Core Container consists of the Core, Beans, Context, and Expression Language modules

the details of which are as follows −

 The Core module provides the fundamental parts of the framework, including the IoC

and Dependency Injection features.

 The Bean module provides BeanFactory, which is a sophisticated implementation of

the factory pattern.

 The Context module builds on the solid base provided by the Core and Beans

modules and it is a medium to access any objects defined and configured. The

ApplicationContext interface is the focal point of the Context module.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 135 -

 The SpEL module provides a powerful expression language for querying and

manipulating an object graph at runtime.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS and Transaction

modules whose detail is as follows −

 The JDBC module provides a JDBC-abstraction layer that removes the need for

tedious JDBC related coding.

 The ORM module provides integration layers for popular object-relational mapping

APIs, including JPA, JDO, Hibernate, and iBatis.

 The OXM module provides an abstraction layer that supports Object/XML mapping

implementations for JAXB, Castor, XMLBeans, JiBX and XStream.

 The Java Messaging Service JMS module contains features for producing and

consuming messages.

 The Transaction module supports programmatic and declarative transaction

management for classes that implement special interfaces and for all your POJOs.

Web

The Web layer consists of the Web, Web-MVC, Web-Socket, and Web-Portlet modules the

details of which are as follows −

 The Web module provides basic web-oriented integration features such as multipart

file-upload functionality and the initialization of the IoC container using servlet

listeners and a web-oriented application context.

 The Web-MVC module contains Spring's Model-View-Controller (MVC)

implementation for web applications.

 The Web-Socket module provides support for WebSocket-based, two-way

communication between the client and the server in web applications.

 The Web-Portlet module provides the MVC implementation to be used in a portlet

environment and mirrors the functionality of Web-Servlet module.

Step 1 - Setup Java Development Kit (JDK)

You can download the latest version of SDK from Oracle's Java site − Java SE

Downloads. You will find instructions for installing JDK in downloaded files, follow the

given instructions to install and configure the setup. Finally set PATH and JAVA_HOME

environment variables to refer to the directory that contains java and javac, typically

java_install_dir/bin and java_install_dir respectively.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.oracle.com/technetwork/java/javase/downloads/index.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 136 -

If you are running Windows and have installed the JDK in C:\jdk1.6.0_15, you would have

to put the following line in your C:\autoexec.bat file.

set PATH=C:\jdk1.6.0_15\bin;%PATH%

set JAVA_HOME=C:\jdk1.6.0_15

Alternatively, on Windows NT/2000/XP, you will have to right-click on My Computer,

select Properties → Advanced → Environment Variables. Then, you will have to update the

PATH value and click the OK button.

On Unix (Solaris, Linux, etc.), if the SDK is installed in /usr/local/jdk1.6.0_15 and you use

the C shell, you will have to put the following into your .cshrc file.

setenv PATH /usr/local/jdk1.6.0_15/bin:$PATH

setenv JAVA_HOME /usr/local/jdk1.6.0_15

Alternatively, if you use an Integrated Development Environment (IDE) like Borland

JBuilder, Eclipse, IntelliJ IDEA, or Sun ONE Studio, you will have to compile and run a

simple program to confirm that the IDE knows where you have installed Java. Otherwise,

you will have to carry out a proper setup as given in the document of the IDE.

Step 2 - Install Apache Common Logging API

You can download the latest version of Apache Commons Logging API

from https://commons.apache.org/logging/. Once you download the installation, unpack the

binary distribution into a convenient location. For example, in C:\commons-logging-1.1.1 on

Windows, or /usr/local/commons-logging-1.1.1 on Linux/Unix. This directory will have the

following jar files and other supporting documents, etc.

Step 3 - Setup Eclipse IDE

All the examples in this tutorial have been written using Eclipse IDE. So we would suggest

you should have the latest version of Eclipse installed on your machine.

To install Eclipse IDE, download the latest Eclipse binaries

from https://www.eclipse.org/downloads/. Once you download the installation, unpack the

binary distribution into a convenient location. For example, in C:\eclipse on Windows, or

/usr/local/eclipse on Linux/Unix and finally set PATH variable appropriately.

Eclipse can be started by executing the following commands on Windows machine, or you

can simply double-click on eclipse.exe

%C:\eclipse\eclipse.exe

Eclipse can be started by executing the following commands on Unix (Solaris, Linux, etc.)

machine −

$/usr/local/eclipse/eclipse

https://commons.apache.org/logging/download_logging.cgi
https://www.eclipse.org/downloads/

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 137 -

Step 4 - Setup Spring Framework Libraries

Now if everything is fine, then you can proceed to set up your Spring framework. Following

are the simple steps to download and install the framework on your machine.

 Make a choice whether you want to install Spring on Windows or Unix, and then

proceed to the next step to download .zip file for Windows and .tz file for Unix.

 Download the latest version of Spring framework binaries

from https://repo.spring.io/release/org/springframework/spring

9.Explain about ORM layer and it’s usage in application development.

Object-relational mapping, in the purest sense, is a programming technique that supports the

conversion of incompatible types in object-oriented programming languages, specifically

between a data store and programming objects. You can use an ORM framework to persist

model objects to a relational database and retrieve them, and the ORM framework will take

care of converting the data between the two otherwise incompatible states. Most ORM tools

rely heavily on metadata about both the database and objects, so that the objects need to

know nothing about the database and the database doesn’t need to know anything about how

the data is structured in the application. ORM provides a clean separation of concerns in a

well-designed data application, and the database and application can each work with data in

its native form.

TIP: Nicknames and acronyms used for “object-relational mapping” include ORM, OR/M,

and O/R mapping. Although ORM seems to be the term most commonly used in the .NET

world, you’ll often see the others in books and articles. We’ll stick with ORM, mostly

because it is the easiest to type!

The key feature of ORM is the mapping it uses to bind an object to its data in the database.

Mapping expresses how an object and its properties and behaviors are related to one or more

tables and their fields in the database. An ORM uses this mapping information to manage the

process of converting data between its database and object forms, and generating the SQL for

a relational database to insert, update, and delete data in response to changes the application

makes to data objects.

ORM performs the rather amazing task of managing the application’s interactions with the

database. Once you’ve used an ORM’s tools to create mappings and objects for use in an

application, those objects completely manage the application’s data access needs. You won’t

have to write any other low-level data access code. Strictly speaking, you could still write

low-level data access code to supplement the ORM data objects, but this adds a significant

layer of complexity to an application that we’ve rarely found necessary when using a robust

ORM tool. It is better to stick to one or the other and keep the application simpler and more

maintainable.

There are a number of benefits to using an ORM for development of databased

applications and here’s four:

https://cdn.journaldev.com/wp-content/uploads/2013/08/first-jsp-run.png
https://cdn.journaldev.com/wp-content/uploads/2013/08/first-jsp-run.png
https://repo.spring.io/release/org/springframework/spring

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 138 -

1. Productivity: The data access code is usually a significant portion of a typical

application, and the time needed to write that code can be a significant portion of the

overall development schedule. When using an ORM tool, the amount of code is

unlikely to be reduced—in fact, it might even go up—but the ORM tool generates

100% of the data access code automatically based on the data model you define, in

mere moments.

2. Application design: A good ORM tool designed by very experienced software

architects will implement effective design patterns that almost force you to use good

programming practices in an application. This can help support a clean separation of

concerns and independent development that allows parallel, simultaneous

development of application layers.

3. Code Reuse: If you create a class library to generate a separate DLL for the ORM-

generated data access code, you can easily reuse the data objects in a variety of

applications. This way, each of the applications that use the class library need have no

data access code at all.

4. Application Maintainability: All of the code generated by the ORM is presumably

well-tested, so you usually don’t need to worry about testing it extensively. Obviously

you need to make sure that the code does what you need, but a widely used ORM is

likely to have code banged on by many developers at all skill levels. Over the long

term, you can refactor the database schema or the model definition without affecting

how the application uses the data objects.

One potential downside to using an ORM is performance. It is very likely that the data access

code generated by the ORM is more complex than you’d typically write for an application.

This is because most ORMs are designed to handle a wide variety of data-use scenarios, far

more than any single application is ever likely to use. Complex code generally means slower

performance, but a well-designed ORM is likely to generate well-tuned code that minimizes

the performance impact. Besides, in all but the most data-intensive applications the time

spent interacting with the database is a relatively small portion of the time the user spends

using the application. Nevertheless, we’ve never found a case where the small performance

hit wasn’t worth the other benefits of using an ORM. You should certainly test it for your

data and applications to make sure that the performance is acceptable.

ORMs are being hyped for being the solution to Data Access problems. Personally, after

having used them in an Enterprise Project, they are far from being the solution for Enterprise

Application Development. Maybe they work in small projects. Here are the problems we

have experienced with them specifically nHibernate:

1. Configuration: ORM technologies require configuration files to map table schemas into

object structures. In large enterprise systems the configuration grows very quickly and

becomes extremely difficult to create and manage. Maintaining the configuration also

gets tedious and unmaintainable as business requirements and models constantly change

and evolve in an agile environment.

2. Custom Queries: The ability to map custom queries that do not fit into any defined

 object is either not supported or not recommended by the framework providers.

 Developers are forced to find work-arounds by writing adhoc objects and queries, or

 writing custom code to get the data they need. They may have to use Stored

 Procedures on a regular basis for anything more complex than a simple Select.

3. Proprietery binding: These frameworks require the use of proprietary libraries and

proprietary object query languages that are not standardized in the computer science

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 139 -

industry. These proprietary libraries and query languages bind the application to the

specific implementation of the provider with little or no flexibility to change if required

and no interoperability to collaborate with each other.

4. Object Query Languages: New query languages called Object Query Languages are

provided to perform queries on the object model. They automatically generate SQL

queries against the databse and the user is abstracted from the process. To Object

Oriented developers this may seem like a benefit since they feel the problem of writing

SQL is solved. The problem in practicality is that these query languages cannot support

some of the intermediate to advanced SQL constructs required by most real world

applications. They also prevent developers from tweaking the SQL queries if necessary.

5. Performance: The ORM layers use reflection and introspection to instantiate and

populate the objects with data from the database. These are costly operations in terms of

processing and add to the performance degradation of the mapping operations. The

Object Queries that are translated to produce unoptimized queries without the option of

tuning them causing significant performance losses and overloading of the database

management systems. Performance tuning the SQL is almost impossible since the

frameworks provide little flexiblity over controlling the SQL that gets autogenerated.

6. Tight coupling: This approach creates a tight dependancy between model objects and

database schemas. Developers don't want a one-to-one correlation between database

fields and class fields. Changing the database schema has rippling affects in the object

model and mapping configuration and vice versa.

7. Caches: This approach also requires the use of object caches and contexts that are

necessary to maintian and track the state of the object and reduce database roundtrips for

the cached data. These caches if not maintained and synchrnonized in a multi-tiered

implementation can have significant ramifications in terms of data-accuracy and

concurrency. Often third party caches or external caches have to be plugged in to solve

this problem, adding extensive burden to the data-access layer.

10. Discuss about Web containers used in JAVA application.

Web Container is an java application that controls servlet. Servlet do not have a main()

method, So they require a container to load them. Container is a place where servlet gets

deployed.

When a client sends a request to web server that contain a servlet, server sends that request to

container rather than to servlet directly. Container then finds out the requested servlet and

pass the Http Request and response to servlet and loads the servlet methods i.e. doGet() or do

Post().

Example of a web container is Tomcat.

Diagrams to show the request made by the client to the server and response received by the

client.

1. Request made by client to server

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 140 -

2. Response received by client

A web container like apache tomcat or jetty just implements the JSP and Servlet specification

of Java EE. However there are more specifications within Java EE, mainly the EJB

specification. A servlet container implements only the JSP and Servlet specification, and

doesn’t implement EJB specification. Hence we cannot deploy and execute EJB applications

in a servlet container like Apache Tomcat or Jetty. Instead you need a full application server.

An application server contains an EJB container as well as servlet container and implements

all the required specifications of Java EE. Examples of application servers are Glassfish

Application Server, which is a Java EE reference implementation from Oracle, Websphere

Application Server by IBM, JBoss Application Server by Red Hat inc etc.

A Web application runs within a Web container of a Web server. The Web container provides

the runtime environment through components that provide naming context and life cycle

management. Some Web servers may also provide additional services such as security and

concurrency control. A Web server may work with an EJB server to provide some of those

services. A Web server, however, does not need to be located on the same machine as an EJB

server.

Web applications are composed of web components and other data such as HTML pages.

Web components can be servlets, JSP pages created with the JavaServer Pages™ technology,

web filters, and web event listeners. These components typically execute in a web server and

may respond to HTTP requests from web clients. Servlets, JSP pages, and filters may be used

to generate HTML pages that are an application’s user interface. They may also be used to

generate XML or other format data that is consumed by other application components.

 UNIT V

1. What is Java beans? Enumerate its advantages. What are the steps involved to

 create a Java Bean?

 A Java Bean is a software component that has been designed to be reusable in a

variety

of different environments.

 It may perform a simple function, such as checking the spelling of a document, or a

 complex function, such as forecasting the performance of a stock portfolio.

Advantages of Java Beans

 A Bean obtains all the benefits of Java’s “write-once, run-anywhere” paradigm.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 141 -

 The properties, events, and methods of a Bean that are exposed to an application

builder tool can be controlled.

 A Bean may be designed to operate correctly in different locales, which makes it

useful in global markets.

Steps for creating of a new bean:

(i) Start--new project. A new project dialog window appear.

(ii) In the new project dialog window select general in categories and java

 application in project box.

(iii) Then click Next button and specify the project name and project path too.

(iv) Then click Finish button.

2. Discuss JAR files in detail with suitable example.

JAR Files:

The JAR Utility

A utility is used to generate a JAR file. Its syntax is shown here:

jar options files

Creating a JAR File

The following command creates a JAR file named Xyz.jar that contains all of the .class and

.gif files in the current directory:

jar cf Xyz.jar *.class *.gif

If a manifest file such as Yxz.mf is available, it can be used with the following command:

jar cfm Xyz.jar Yxz.mf *.class *.gif

Tabulating the Contents of a JAR File

The following command lists the contents of Xyz.jar:

jar tf Xyz.jar

Extracting Files from a JAR File

The following command extracts the contents of Xyz.jar and places those files in the

current directory:

jar xf Xyz.jar

Updating an Existing JAR File

The following command adds the file file1.class to Xyz.jar:

jar -uf Xyz.jar file1.class

Recursing Directories

The following command adds all files below directoryX to Xyz.jar:

jar -uf Xyz.jar -C directoryX *

3. Explain Design patterns and properties in detail.

A property is a subset of a Bean’s state. The values assigned to the properties determine the

behavior and appearance of that component. There are three types of properties: simple,

Boolean, and indexed.

Simple Properties: A simple property has a single value. It can be identified by the

following design patterns, where N is the name of the property and T is its type.

public T getN();

public void setN(T arg);

A read/write property has both of these methods to access its values. A read-only property

has only a get method. A write-only property has only a set method.

Example for Simple Properties:

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 142 -

public class Box {

private double depth, height, width;

public double getDepth() {

return depth;

}

public void setDepth(double d) {

depth = d;

}

public double getHeight() {

return height;

}

public void setHeight(double h) {

height = h;

}

public double getWidth() {

return width;

}

public void setWidth(double w) {

width = w;

}

}

Boolean Properties: A Boolean property has a value of true or false. It can be identified by

the following design patterns, where N is the name of the property:

public boolean isN();

public boolean getN();

public void setN(boolean value);

Either the first or second pattern can be used to retrieve the value of a Boolean property.

However, if a class has both of these methods, the first pattern is used.

Example:

public class Line {

private boolean dotted = false;

public boolean isDotted() {

return dotted;

}

public void setDotted(boolean dotted) {

this.dotted = dotted;

}

}

Indexed Properties: An indexed property consists of multiple values. It can be identified by

the following design patterns, where N is the name of the property and T is its type:

public T getN(int index);

public void setN(int index, T value);

public T[] getN();

public void setN(T values[]);

Example:

public class PieChart {

private double data[];

public double getData(int index) {

return data[index];

}

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 143 -

public void setData(int index, double value) {

data[index] = value;

}

public double[] getData() {

return data;

}

public void setData(double[] values) {

data = new double[values.length];

System.arraycopy(values, 0, data, 0, values.length);

}

}

4. Explain BeanInfo interface in detail.

Design patterns were used to determine the information that was provided to a Bean user.

This section describes how a developer can use the BeanInfo interface to explicitly control

this process.

This interface defines several methods, including these:

PropertyDescriptor[] getPropertyDescriptors()

EventSetDescriptor[] getEventSetDescriptors()

MethodDescriptor[] getMethodDescriptors()

They return arrays of objects that provide information about the properties, events, and

methods of a Bean. By implementing these methods, a developer can designate exactly what

is presented to a user.

SimpleBeanInfo is a class that provides default implementations of the BeanInfo interface,

including the three methods just shown. You may extend this class and override one or more

of them. The following listing shows how this is done for the Colors Bean that was

developed earlier. ColorsBeanInfo is a subclass of SimpleBeanInfo. It overrides

getPropertyDescriptors() in order to designate which properties are presented to a Bean

user. This method creates a PropertyDescriptor object for the rectangular property. The

PropertyDescriptor constructor that is used is shown here:

PropertyDescriptor(String property, Class beanCls)

throws IntrospectionException

Here, the first argument is the name of the property, and the second argument is the class of

the Bean.

// A Bean information class.

package sunw.demo.colors;

import java.beans.*;

public class ColorsBeanInfo extends SimpleBeanInfo {

public PropertyDescriptor[] getPropertyDescriptors() {

try {

PropertyDescriptor rectangular = new

PropertyDescriptor("rectangular", Colors.class);

PropertyDescriptor pd[] = {rectangular};

return pd;

}

catch(Exception e) {

}

return null;

}

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 144 -

}

You must compile this file from the BDK\demo directory or set CLASSPATH so that it

includes c:\bdk\demo. If you don’t, the compiler won’t find the Colors.class file properly.

After this file is successfully compiled, the colors.mft file can be updated, as shown here:

Name: sunw/demo/colors/ColorsBeanInfo.class

Name: sunw/demo/colors/Colors.class

Java-Bean: True

Use the JAR tool to create a new colors.jar file. Restart the BDK and create an instance of

the Colors Bean in the BeanBox. The introspection facilities are designed to look for a

BeanInfo class. If it exists, its behavior explicitly determines the information that is

presented to a Bean user. Otherwise, design patterns are used to infer this information.

5. Explain Java Bean API in detail.

Interface Description

AppletInitializer

This interface is designed to work in collusion with

java.beans.Beans.instantiate.

BeanInfo

A bean implementor who wishes to provide explicit information

about their bean may provide a BeanInfo class that implements

this BeanInfo interface and provides explicit information about

the methods, properties, events, etc, of their bean.

Customizer

A customizer class provides a complete custom GUI for

customizing a target Java Bean.

DesignMode

This interface is intended to be implemented by, or delegated

from, instances of java.beans.beancontext.BeanContext, in order

to propagate to its nested hierarchy of

java.beans.beancontext.BeanContextChild instances, the current

"designTime" property.

ExceptionListener
An ExceptionListener is notified of internal exceptions.

PropertyChangeListener

A "PropertyChange" event gets fired whenever a bean changes a

"bound" property.

PropertyEditor

A PropertyEditor class provides support for GUIs that want to

allow users to edit a property value of a given type.

VetoableChangeListener

A VetoableChange event gets fired whenever a bean changes a

"constrained" property.

Visibility

Under some circumstances a bean may be run on servers where a

GUI is not availabl

Class Description

BeanDescriptor

A BeanDescriptor provides global information about a "bean",

including its Java class, its displayName, etc.

Beans
This class provides some general purpose beans control methods.

DefaultPersistence

Delegate

The DefaultPersistenceDelegate is a concrete

implementation of the abstract PersistenceDelegate class

http://docs.oracle.com/javase/6/docs/api/java/beans/AppletInitializer.html
http://docs.oracle.com/javase/6/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/6/docs/api/java/beans/Customizer.html
http://docs.oracle.com/javase/6/docs/api/java/beans/DesignMode.html
http://docs.oracle.com/javase/6/docs/api/java/beans/ExceptionListener.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyChangeListener.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyEditor.html
http://docs.oracle.com/javase/6/docs/api/java/beans/VetoableChangeListener.html
http://docs.oracle.com/javase/6/docs/api/java/beans/Visibility.html
http://docs.oracle.com/javase/6/docs/api/java/beans/BeanDescriptor.html
http://docs.oracle.com/javase/6/docs/api/java/beans/Beans.html
http://docs.oracle.com/javase/6/docs/api/java/beans/DefaultPersistenceDelegate.html
http://docs.oracle.com/javase/6/docs/api/java/beans/DefaultPersistenceDelegate.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 145 -

and is the delegate used by default for classes about which no

information is available.

Encoder

An Encoder is a class which can be used to create files or streams

that encode the state of a collection of JavaBeans in terms of their

public APIs.

EventHandler

The EventHandler class provides support for dynamically

generating event listeners whose methods execute a simple

statement involving an incoming event object and a target object.

EventSetDescriptor

An EventSetDescriptor describes a group of events that a given

Java bean fires.

Expression

An Expression object represents a primitive expression in

which a single method is applied to a target and a set of arguments

to return a result - as in "a.getFoo()".

FeatureDescriptor

The FeatureDescriptor class is the common baseclass for

PropertyDescriptor, EventSetDescriptor, and MethodDescriptor,

etc.

IndexedPropertyChan

geEvent

An "IndexedPropertyChange" event gets delivered whenever a

component that conforms to the JavaBeans specification (a "bean")

changes a bound indexed property.

IndexedPropertyDescr

iptor

An IndexedPropertyDescriptor describes a property that acts like an

array and has an indexed read and/or indexed write method to

access specific elements of the array.

Introspector

The Introspector class provides a standard way for tools to learn

about the properties, events, and methods supported by a target

Java Bean.

MethodDescriptor

A MethodDescriptor describes a particular method that a Java Bean

supports for external access from other components.

ParameterDescriptor

The ParameterDescriptor class allows bean implementors to

provide additional information on each of their parameters, beyond

the low level type information provided by the

java.lang.reflect.Method class.

PersistenceDelegate

The PersistenceDelegate class takes the responsibility for

expressing the state of an instance of a given class in terms of the

methods in the class's public API.

PropertyChangeEvent

A "PropertyChange" event gets delivered whenever a bean changes

a "bound" or "constrained" property.

PropertyChangeListen

erProxy

A class which extends the EventListenerProxy specifically

for adding a named PropertyChangeListener.

PropertyChangeSuppo

rt

This is a utility class that can be used by beans that support bound

properties.

PropertyDescriptor

A PropertyDescriptor describes one property that a Java Bean

exports via a pair of accessor methods.

http://docs.oracle.com/javase/6/docs/api/java/beans/Encoder.html
http://docs.oracle.com/javase/6/docs/api/java/beans/EventHandler.html
http://docs.oracle.com/javase/6/docs/api/java/beans/EventSetDescriptor.html
http://docs.oracle.com/javase/6/docs/api/java/beans/Expression.html
http://docs.oracle.com/javase/6/docs/api/java/beans/FeatureDescriptor.html
http://docs.oracle.com/javase/6/docs/api/java/beans/IndexedPropertyChangeEvent.html
http://docs.oracle.com/javase/6/docs/api/java/beans/IndexedPropertyChangeEvent.html
http://docs.oracle.com/javase/6/docs/api/java/beans/IndexedPropertyDescriptor.html
http://docs.oracle.com/javase/6/docs/api/java/beans/IndexedPropertyDescriptor.html
http://docs.oracle.com/javase/6/docs/api/java/beans/Introspector.html
http://docs.oracle.com/javase/6/docs/api/java/beans/MethodDescriptor.html
http://docs.oracle.com/javase/6/docs/api/java/beans/ParameterDescriptor.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PersistenceDelegate.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyChangeEvent.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyChangeListenerProxy.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyChangeListenerProxy.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyChangeSupport.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyChangeSupport.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyDescriptor.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 146 -

PropertyEditorManag

er

The PropertyEditorManager can be used to locate a property editor

for any given type name.

PropertyEditorSuppor

t

This is a support class to help build property editors.

SimpleBeanInfo

This is a support class to make it easier for people to provide

BeanInfo classes.

Statement

A Statement object represents a primitive statement in which a

single method is applied to a target and a set of arguments - as

in "a.setFoo(b)".

6. Explain reserved sockets and proxy servers in detail.

Reserved Sockets: Once connected, a higher-level protocol ensues, which is dependent on

which port you are using. TCP/IP reserves the lower 1,024 ports for specific protocols. Many

of these will seem familiar to you if you have spent any time surfing the Internet. Port

number 21 is for FTP, 23 is for Telnet, 25 is for e-mail, 79 is for finger, 80 is for HTTP, 119

is for netnews—and the list goes on. It is up to each protocol to determine how a client

should interact with the port. For example, HTTP is the protocol that web browsers and

servers use to transfer hypertext pages and images. It is quite a simple protocol for a basic

page-browsing web server. Here’s how it works. When a client requests a file from an HTTP

server, an action known as a hit, it simply prints the name of the file in a special format to a

predefined port and reads back the contents of the file. The server also responds with a status

code number to tell the client whether the request can be fulfilled and why.

Proxy Servers: A proxy server speaks the client side of a protocol to another server. This is

often required when clients have certain restrictions on which servers they can connect to.

Thus, a client would connect to a proxy server, which did not have such restrictions, and the

proxy server would in turn communicate for the client. A proxy server has the additional

ability to filter certain requests or cache the results of those requests for future use. A caching

proxy HTTP server can help reduce the bandwidth demands on a local network’s connection

to the Internet. When a popular web site is being hit by hundreds of users, a proxy server can

get the contents of the web server’s popular pages once, saving expensive internetwork

transfers while providing faster access to those pages to the clients.

7. Explain InetAddress in detail.

Whether you are making a phone call, sending mail, or establishing a connection across the

Internet, addresses are fundamental. The InetAddress class is used to encapsulate both the

numerical IP address we discussed earlier and the domain name for that address. You interact

with this class by using the name of an IP host, which is more convenient and understandable

than its IP address. The InetAddress class hides the number inside. As of Java 2, version 1.4,

InetAddress can handle both IPv4 and IPv6 addresses.

The InetAddress class has no visible constructors. To create an InetAddress object, you

have to use one of the available factory methods. Factory methods are merely a convention

whereby static methods in a class return an instance of that class. This is done in lieu of

overloading a constructor with various parameter lists when having unique method names

makes the results much clearer. Three commonly used InetAddress factory methods are

shown here.

static InetAddress getLocalHost()

http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyEditorManager.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyEditorManager.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyEditorSupport.html
http://docs.oracle.com/javase/6/docs/api/java/beans/PropertyEditorSupport.html
http://docs.oracle.com/javase/6/docs/api/java/beans/SimpleBeanInfo.html
http://docs.oracle.com/javase/6/docs/api/java/beans/Statement.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 147 -

throws UnknownHostException

static InetAddress getByName(String hostName)

throws UnknownHostException

static InetAddress[] getAllByName(String hostName)

throws UnknownHostException

The getLocalHost() method simply returns the InetAddress object that represents the local

host. The getByName() method returns an InetAddress for a host name passed to it. If these

methods are unable to resolve the host name, they throw an UnknownHostException.

// Demonstrate InetAddress.

import java.net.*;

class InetAddressTest

{

public static void main(String args[]) throws UnknownHostException {

InetAddress Address = InetAddress.getLocalHost();

System.out.println(Address);

Address = InetAddress.getByName("osborne.com");

System.out.println(Address);

InetAddress SW[] = InetAddress.getAllByName("www.nba.com");

for (int i=0; i<SW.length; i++)

System.out.println(SW[i]);

}

}

8. Explain TCP/IP Client Sockets in detail.(DEC2015)

TCP/IP sockets are used to implement reliable, bidirectional, persistent, point-to- point,

stream-based connections between hosts on the Internet. A socket can be used to connect

Java’s I/O system to other programs that may reside either on the local machine or on any

other machine on the Internet.

There are two kinds of TCP sockets in Java. One is for servers, and the other is for clients.

The ServerSocket class is designed to be a “listener,” which waits for clients to connect

before doing anything. The Socket class is designed to connect to server sockets and initiate

protocol exchanges.

The creation of a Socket object implicitly establishes a connection between the client and

server. There are no methods or constructors that explicitly expose the details of establishing

that connection. Here are two constructors used to create client sockets:

Socket(String hostName, int port) Creates a socket connecting the local host to the named

host and port; can throw an UnknownHostException or an IOException.

Socket(InetAddress ipAddress, int port) Creates a socket using a preexisting InetAddress

object and a port; can throw an IOException.

A socket can be examined at any time for the address and port information associated with it,

by use of the following methods:

InetAddress getInetAddress() Returns the InetAddress associated with the Socket object.

int getPort() Returns the remote port to which this Socket object is connected.

int getLocalPort() Returns the local port to which this Socket object is connected.

Once the Socket object has been created, it can also be examined to gain access to the input

and output streams associated with it. Each of these methods can throw an IOException if

the sockets have been invalidated by a loss of connection on the Net.

InputStream getInputStream() Returns the InputStream associated with the invoking socket.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 148 -

OutputStream getOutputStream() Returns the OutputStream associated with the invoking

socket.

9. Explain TCP/IP Server Sockets in detail.

Java has a different socket class that must be used for creating server applications. The

ServerSocket class is used to create servers that listen for either local or remote client

programs to connect to them on published ports. Since the Web is driving most of the activity

on the Internet, this section develops an operational web (http) server.

ServerSockets are quite different from normal Sockets. When you create a ServerSocket, it

will register itself with the system as having an interest in client connections. The

constructors for ServerSocket reflect the port number that you wish to accept connections on

and, optionally, how long you want the queue for said port to be. The queue length tells the

system how many client connections it can leave pending before it should simply refuse

connections. The default is 50. The constructors might throw an IOException under adverse

conditions.

Here are the constructors:

ServerSocket(int port) - Creates server socket on the specified port with a queue length of 50.

ServerSocket(int port, int maxQueue) - Creates a server socket on the specified port with a

maximum queue length of maxQueue.

ServerSocket(int port, int maxQueue, InetAddress localAddress) - Creates a server socket on

the specified port with a maximum queue length of maxQueue. On a multihomed host,

localAddress specifies the IP address to which this socket binds.

10. Explain Datagram in detail with an example.

Datagrams are bundles of information passed between machines. They are somewhat like a

hard throw from a well-trained but blindfolded catcher to the third baseman. Once the

datagram has been released to its intended target, there is no assurance that it will arrive or

even that someone will be there to catch it. Likewise, when the datagram is received, there is

no assurance that it hasn’t been damaged in transit or that whoever sent it is still there to

receive a response. Java implements datagrams on top of the UDP protocol by using two

classes:

The DatagramPacket object is the data container, while the DatagramSocket is the

mechanism used to send or receive the DatagramPackets.

DatagramPacket: DatagramPacket defines several constructors. Four are described here.

The first constructor specifies a buffer that will receive data, and the size of a packet. It is

used for receiving data over a DatagramSocket. The second form allows you to specify an

offset into the buffer at which data will be stored. The third form specifies a target address

and port, which are used by a DatagramSocket to determine where the data in the packet

will be sent. The fourth form transmits packets beginning at the specified offset into the data.

Think of the first two forms as building an “in box,” and the second two forms as stuffing and

addressing an envelope. Here are the four constructors:

DatagramPacket(byte data[], int size)

DatagramPacket(byte data[], int offset, int size)

DatagramPacket(byte data[], int size, InetAddress ipAddress, int port)

DatagramPacket(byte data[], int offset, int size, InetAddress ipAddress, int port)

There are several methods for accessing the internal state of a DatagramPacket. They give

complete access to the destination address and port number of a packet, as well as the raw

data and its length. Here are some of the most commonly used:

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 149 -

InetAddress getAddress() Returns the destination InetAddress, typically used for sending.

int getPort() Returns the port number.

byte[] getData() Returns the byte array of data contained in the datagram. Mostly used to

retrieve data from the datagram after it has been received.

int getLength() Returns the length of the valid data contained in the byte array that would be

returned from the getData() method. This typically does not equal the length of the whole

byte array.

import java.net.*;

class WriteServer {

public static int serverPort = 998;public static int clientPort = 999;

public static int buffer_size = 1024; public static DatagramSocket ds;

public static byte buffer[] = new byte[buffer_size];

public static void TheServer() throws Exception {

int pos=0;

while (true) {

int c = System.in.read();

switch (c) {

case -1:

System.out.println("Server Quits.");return;

case '\r':

break;

case '\n':

ds.send(new DatagramPacket(buffer,pos,

InetAddress.getLocalHost(),clientPort));

pos=0;

break;

default:

buffer[pos++] = (byte) c;

}}}

public static void TheClient() throws Exception {

while(true) {

DatagramPacket p = new DatagramPacket(buffer, buffer.length);

ds.receive(p);

System.out.println(new String(p.getData(), 0, p.getLength()));

}}

public static void main(String args[]) throws Exception {

if(args.length == 1) {

ds = new DatagramSocket(serverPort);

TheServer();

} else {

ds = new DatagramSocket(clientPort);

TheClient();}}}

T

11.Write a client application that executes an infinite loop to perform the following :

Prompts the user for a number (ii) Sends it to :the server (iii) Receives a number sent by

the server (iv) Displays the received number Also write a server that executes an infinite

loop to read a number from a client, compute the square value and send the result to

the client. (DEC2014)

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 150 -

Y PROGRAM for FTPSERVER

import java.io.*;

import java.net.*;

class Server

{

 public static void main(String args[]) throws IOException

 {

 ServerSocket ss = new ServerSocket(8010);

 Socket s = ss.accept();

 BufferedReader br = new BufferedReader(new InputStreamReader(s.getInputStream()));

 PrintWriter p = new PrintWriter(s.getOutputStream(), true);

 DataInputStream in = new DataInputStream(System.in);

 boolean bo=true;

 while(bo)

 {

 int i=Integer.parseInt(br.readLine());

 String st;

 switch(i)

 {

 case 1:

 {

 st=br.readLine();

 System.out.println("Input File name from client is:" +st);

 DataInputStream inf = new DataInputStream(new FileInputStream(new File(st)));

 st=br.readLine();

 System.out.println("Output File name from client is:" +st);

 DataOutputStream outf = new DataOutputStream(new FileOutputStream(new

File(st)));

 st=inf.readLine();

 while(st!=null)

 {

 outf.writeBytes(st);

 st=inf.readLine();

 }

 System.out.println("File content has been sent to client");

 break;

 }

 case 2:

 {

 System.out.println("Enter the Input File name from server to client");

 st=in.readLine();

 p.println(st);

 System.out.println("Enter the Output File name from server to client");

 st=in.readLine();

 p.println(st);

 }

 case 3:

 {

 bo=false; break;

 }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 151 -

 }

 }} }

PROGRAM for FTPCLIENT

import java.io.*;

import java.net.*;

class Client

{

 public static void main(String args[]) throws IOException

 {

 Socket s = new Socket("localhost", 8010);

 BufferedReader br = new BufferedReader(new InputStreamReader(s.getInputStream()));

 PrintWriter p = new PrintWriter(s.getOutputStream(), true);

 DataInputStream in = new DataInputStream(System.in);

 boolean bo=true;

 while(bo)

 {

System.out.println("Enter the choice\n 1. Getting the file content\n 2.Sending the file

content\n 3.Exit");

 int i=Integer.parseInt(in.readLine());

 p.println(i);

 String st;

 switch(i)

 {

 case 1:

 {

 System.out.println("Enter the Input File name from client to server");

 st=in.readLine(); p.println(st);

 System.out.println("Enter the Output File name from client to server");

 st=in.readLine(); p.println(st); break;

 }

 case 2:

 {

 st=br.readLine();

 System.out.println("Input File name from server is:" +st);

 DataInputStream inf = new DataInputStream(new FileInputStream(new File(st)));

 st=br.readLine();

 System.out.println("Output File name from server is:" +st);

 DataOutputStream outf = new DataOutputStream(new FileOutputStream(new

File(st)));

 st=inf.readLine();

 while(st!=null)

 {

 outf.writeBytes(st); st=inf.readLine();

 }

 System.out.println("File content has been sent to server");

 break;

 }

 case 3:

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 152 -

 {

 bo=false; break;

 }

 }

 }

 }

}

12.Write about Java Bean builder tool with neat example.

Building Your Application

The Bean Builder can also be used for building custom UI applications which are to be

integrated and invoked from the Web NMS client. This is easily achievable by making your

applications implement either the NmsPanel Interface or the NmsFrame Interface which form

the building blocks of the Web NMS client. For more details on building NmsPanels and

NmsFrames using Bean Builder, please refer Bean Builder documentation.

Packaging your Application

Having built the application, our next responsibility is packaging the same so to be invoked

from the Web NMS client. This process is made easy in Bean Builder by using

the NAR mechanism . (NAR stands for Nms ARchive). The NAR proprietary archiving

mechanism used for packaging Web NMS applications. It is as same as a Java ARchive with

some additional Web NMS-specific information. A separate wizard named as the "Package

Wizard" (provide link to package wizard document in Bean Builder) will help you in

generating a NAR file for your application. This tool can be invoked from the following

menu item in Bean Builder : "Project -> Package For WebNMS -> Device Specific/Not

Device Specific".

Integrating/Installing Your Application

After packaging your application using the package wizard, a NAR file is generated for your

application. This NAR file can be integrated into the Web NMS client using a tool named

"Deployment Wizard" which can be invoked from the "<Web NMS

Home>/bin/developertools" directory. The way in which your application has to be invoked

from the client (i.e., whether it has to be invoked as a Frame on a menu action or from the

Tree) can be configured using this tool based your application build type (whether an

NmsPanel or an NmsFrame). For more details on installing a NAR file using the Deployment

Wizard. You can refer the document: Deployment tool-->Installing a Client NAR.

Implementation Example

Some of the applications/tools bundled in Web NMS client has been built using Bean Builder

and packaged using the NAR mechanism. The bean builder projects as a whole (Screens,

Source files, etc.) are also bundled with the product and can be accessed from under

the <Web NMS Home>/projects directory. The tools such as "Runtime Administration" and

"Security Administration" which can be accessed from the "Tools" menu of the Java client

and "Batch Configuration" displayed as a node in the client tree are some project examples

built using the Bean Builder tool. One among these builder project is taken as an example and

https://www.webnms.com/webnms/help/bean_builder/index.html
https://www.webnms.com/webnms/help/developer_guide/designer_tools/deployment_wizard/installer_uninstaller/clientspecific_nar_installer.html

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 153 -

explained for your reference in the following chapter: "Run-Time Administration: A Bean

Builder Project for Web NMS".

13. Write about Java Bean builder tool with neat example and bean developer Kit

 (DEC 2015)

"A Javabean is a reusable software component that can be manipulated visually in an

application builder tool."

"A Javabean is an independent, reusable software component. Beans may be visual object,

like Swing components (e.g. JButton, JTextField) that you can drag and drop using a GUI

builder tool to assemble your GUI application. Beans may also be invisible object, like

queues or stacks. Again, you can use these components to assemble your application using a

builder tool."

avabeans expose their features (such as properties, methods, events) to the application builder

tools for visual manipulation. These feature names must adhere to a strict naming convention

in order for them to be examined automatically. In other words, an application builder tool

relies on these naming conventions to discover the exposed features, in a process known as

introspection. For examples,

1. A property called propertyName of type PropertyType has the following convention:

2. PropertyType propertyName // declaration

3. public PropertyType getPropertyName() // getter

public void setPropertyName(PropertyType p) // setter

Bean Development Kit (BDK)

Bean Development Kit (BDK) is a tool for testing whether your Javabeans meets the

JavaBean specification. Follow the instruction provided to install the BDK. Read the

documentation and tutorial provided (in particular, "The Java Tutorial, specialized trial on

JavaBeans"). BDK comes with a set of sample demo beans. You should try them out and

closely study these demo beans before writing our own beans.

Let's try to assemble (or compose) an application using the BDK demo beans.

1. Start the "beanbox" by running "$bdk\beanbox\run.bat".

2. From the "Toolbox" window, select "Juggler" (a demo bean) and place it inside the

"beanbox" (by clicking the desired location in the "beanbox" window). Observe the

"Property" window of the Juggler bean.

3. Create a button by selecting "OurButton" demo bean from the "Toolbox" and place it

inside the "Beanbox". In the "Proprety" window, change the "label" from "press" to

"start".

4. Focus on "OurButton", choose "Edit”" from menu ⇒ "Events" ⇒ "mouse" ⇒

"mouseClicked" and place it onto the "Juggler" (i.e., "Juggler" is the target of this

event). In the "EventTargetDialog", select method "startJuggling" as the event handler.

5. Create another button by selecting "OurButton" bean from "Toolbox" and place it

inside the "Beanbox" again. In the "Proprety" window, change the "label" from "press"

to "stop".

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 154 -

6. Focus on the stop button, choose "Edit" from menu ⇒ "Events" ⇒ "mouse" ⇒

"mouseClicked" and place it onto the "Juggler". In the "EventTargetDialog", select

method "stopJuggling" as the event handler.

7. Click on the buttons, and observe the result.

1. package elect;

2. import java.awt.*;

3. import java.io.Serializable;

4.

5. public class LightBulb extends Canvas implements Serializable {

6.

7. public LightBulb() { // constructor

8. setSize(50,50);

9. setBackground(Color.GRAY);

10. }

11.
12. // Properties

13. private static final Color COLOR_OFF = Color.BLACK;

14. private Color color = Color.ORANGE; // property with a default value

15. public Color getColor() { return color; } // getter

16. public void setColor(Color color) { this.color = color; } // setter

17.
18. boolean on = false; // property with a default value

19. public boolean isOn() { return on; } // getter for boolean

20. public void setOn(boolean on) { this.on = on; } // setter

21.
22. // Override the paint() method to draw the LightBulb

23. public void paint(Graphics g) {

24. if (on) g.setColor(color);

25. else g.setColor(COLOR_OFF);

26. g.fillOval(10, 10, 30, 30);

27. }

28.
29. public void switchOn() { // switch on the Light

30. on = true;

31. repaint();

32. }

33.
34. public void switchOff() { // switch off the Light

35. on = false;

36. repaint();

37. }

38.
39. public void toggle() { // If on turns off; else turns on

40. on = !on;

41. repaint();

42. }

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 155 -

43. }

14. Discuss about Classes and Interface used by Java Bean (DEC 2016)

The Java Beans API: The Java Beans functionality is provided by a set of classes and

interfaces in the java.beans package. Set of classes and interfaces in the java.beans package

Package java.beans Contains classes related to developing beans -- components based on the

JavaBeansTM architecture

BeanDescriptor: A BeanDescriptor provides global information about a "bean", including its

Java class, its displayName, etc Beans This class provides some general purpose beans

control methods.

DefaultPersistenceDelegate: The DefaultPersistenceDelegate is a concrete implementation

of the abstract PersistenceDelegate class and is the delegate used by default for classes about

which no information is available.

Encoder: An Encoder is a class which can be used to create files or streams that encode the

state of a collection of JavaBeans in terms of their public APIs.

EventHandler :The EventHandler class provides support for dynamically generating event

listeners whose methods execute a simple statement involving an incoming event object and a

target object. EventSetDescriptor: An EventSetDescriptor describes a group of events that a

given Java bean fires. Expression An Expression object represents a primitive expression in

which a single method is applied to a target and a set of arguments to return a result - as in

"a.getFoo()". AppletInitializer This interface is designed to work in collusion with

java.beans.Beans.instantiate.

 BeanInfo A bean implementor who wishes to provide explicit information about their bean

may provide a BeanInfo class that implements this BeanInfo interface and provides explicit

information about the methods, properties, events, etc, of their bean.

Customizer A customizer class provides a complete custom GUI for customizing a target

Java Bean DesignMode This interface is intended to be implemented by, or delegated from,

instances of java.beans.beancontext.BeanContext, in order to propagate to its nested

hierarchy of java.beans.beancontext.BeanContextChild instances, the current "designTime"

property. ExceptionListener: An ExceptionListener is notified of internal exceptions.

PropertyChangeListener: A "PropertyChange" event gets fired whenever a bean changes a

"bound" property.

PropertyEditor A PropertyEditor class provides support for GUIs that want to allow users to

edit a property value of a given type.

VetoableChangeListener: A VetoableChange event gets fired whenever a bean changes a

"constrained" property Visibility Under some circumstances a bean

The BeanInfoInterface : By default an Introspector uses the Reflection API to determine the

features of a JavaBean.However, a JavaBean can provide its own BeanInfo which will be

used instead by the Introspector to determine the discussed information. This allows a

developer hiding specific properties, events and methods from a builder tool or from any

other tool which uses the Introspector class. Moreover it allows supplying further details

about events/properties/methods as you are in charge of creating the descriptor objects.

Hence you can, for example, call the setShortDescription() method to set a descriptive

description.

A BeanInfo class has to be derived from the SimpleBeanInfo class and its name has to start

with the name of the associated JavaBean. At this point it has to be underlined that the name

of the BeanInfo class is the only relation between a JavaBean and its BeanInfo class. The

BeanInfo interface provides the methods that enable you to specify and retrieve the

information about a JavaBean.

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 156 -

15. i)Methods Supported by Datagramsocket(DEC 2016)

ad.getHostName();

ad.getHostAddress();

Handles Internet addresses both as host names and as IP addresses. Static Method

getByName returns the IP address of a specified host name as an InetAddress object.

Methods for address/name conversion:

public static InetAddress getByName(String host) throws UnknownHostException

public static InetAddress[] getAllByName(String host) throws UnknownHostException

public static InetAddress getLocalHost() throws UnknownHostException

public boolean isMulticastAddress()

public String getHostName()

public byte[] getAddress()

public String getHostAddress()

public int hashCode()

public boolean equals(Object obj)

public String toString()

The UDP classes : 2 classes:

java.net.DatagramSocket class: is a connection to a port that does the sending and

receiving. A DatagramSocket can send to multiple, different addresses.The address to which

data goes is stored in the packet, not in the socket.

public DatagramSocket() throws SocketException public DatagramSocket(int port) throws

SocketException

public DatagramSocket(int port, InetAddress laddr) throws SocketException

java.net.DatagramPacket class : is a wrapper for an array of bytes from which data will be

sent or into which data will be received. It also contains the address and port to which the

packet will be sent.

public DatagramPacket(byte[] data, int length) public DatagramPacket(byte[] data, int length,

InetAddress host, int port)

SERVER:
1. Create a DatagramSocket object DatagramSocket dgramSocket = new

DatagramSocket(1234);

2. Create a buffer for incoming datagrams byte[] buffer = new byte[256];

3. Create a DatagramPacket object for the incoming datagram DatagramPacket inPacket =

new DatagramPacket(buffer, buffer.length);

4. Accept an incoming datagram dgramSocket.receive(inPacket)

5. Accept the sender’s address and port from the packet InetAddress clientAddress =

 inPacket.getAddress(); int clientPort = inPacket.getPort();

6. Retrieve the data from the buffer string message = new String(inPacket.getData(), 0,

 inPacket.getLength());

7. Create the respons e datagram DatagramPacket outPacket = new DatagramPacket(

 response.getBytes(), response.length(), clientAddress, clientPort);

8. Send the response datagram dgramSocket.send(outPacket)

9. Close the DatagramSocket: dgram.close();

CLIENT:
1. Create a DatagramSocket object DatagramSocket dgramSocket = new DatagramSocket;

2. Create the outgoing datagram DatagramPacket outPacket = new DatagramPacket(

message.getBytes(), message.length(), host, port);

3. Send the datagram message dgramSocket.send(outPacket)

4. Create a buffer for incoming datagrams byte[] buffer = new byte[256];

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 157 -

5. Create a DatagramPacket object for the incoming datagram DatagramPacket inPacket =

new DatagramPacket(buffer, buffer.length);

6. Accept an incoming datagram dgramSocket.receive(inPacket)

7. Retrieve the data from the buffer string response = new String(inPacket.getData(), 0,

inPacket.getLength());

8. Close the DatagramSocket: dgram.close();

When you receive a packet, the IP and port number of the sender are set in the

DatagramPacket use the same packet to reply, by overwriting the data, using the method:

packet.setData(newbuffer);

Non-blocking I/O receiving UDP packets: set a time-out in milliseconds to determine how

long a read operation blocks, before throwing an exception.

…socket.setSoTimeout(duration);

15. ii) Explain the Fundamentals of Java Bean Ad Bdk(DEC 2016)

INTRODUCTION TO JAVA BEANS
Software components are self-contained software units developed according to the

motto “Developed them once, run and reused them everywhere”. Or in other words,

reusability is the main concern behind the component model. A software component is a

reusable object that can be plugged into any target software application. You can develop

software components using various programming languages, such as C, C++, Java, and

Visual Basic.

 A “Bean” is a reusable software component model based on sun’s java bean specification

that can be manipulated visually in a builder tool.

 The term software component model describe how to create and use reusable software

components to build an application

 Builder tool is nothing but an application development tool which lets you both to create

new beans or use existing beans to create an application.

 To enrich the software systems by adopting component technology JAVA came up with the

concept called Java Beans.

 Java provides the facility of creating some user defined components by means of Bean

programming.

 We create simple components using java beans.

 We can directly embed these beans into the software. Advantages of Java Beans:

 The java beans possess the property of “Write once and run anywhere”.

 Beans can work in different local platforms.

 Beans have the capability of capturing the events sent by other objects and vice versa

enabling object communication.

 The properties, events and methods of the bean can be controlled by the application

developer.(ex. Add new properties)

 Beans can be configured with the help of auxiliary software during design time.(no hassle

at runtime)

 The configuration setting can be made persistent.(reused)

 Configuration setting of a bean can be saved in persistent storage and restored later.

What can we do/create by using JavaBean: There is no restriction on the capability of a

Bean. It may perform a simple function, such as checking the spelling of a document, or a

complex function, such as forecasting the performance of a stock portfolio. A Bean may be

visible to an end user. One example of this is a button on a graphical user interface.

Software to generate a pie chart from a set of data points is an example of a Bean that can

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 158 -

execute locally. Bean that provides real-time price information from a stock or commodities

exchange.

JavaBeans Basic rules: A JavaBean should: be public implement the Serializable

interface have a no-arg constructor be derived from javax.swing.JComponent or

java.awt.Component if it is visual The classes and interfaces defined in the java.beans

package enable you to create JavaBeans.

The Java Bean components can exist in one of the following three phases of development

 Construction phase

 Build phase

 Execution phase

It supports the standard component architecture features of Properties Events

Methods Persistence.

In addition Java Beans provides support for Introspection (Allows Automatic

Analysis of a java beans) Customization (To make it easy to configure a java beans

component)

Elements of a JavaBean:

 Properties Similar to instance variables. A bean property is a named attribute of a bean that

can affect its behavior or appearance. Examples of bean properties include color, label, font,

font size, and display size.

Methods: Same as normal Java methods. Every property should have accessor (get) and

mutator (set) method. All Public methods can be identified by the introspection mechanism.

There is no specific naming standard for these methods

 Events Similar to Swing/AWT event handling.

The Java Bean Component Specification: Customization: Is the ability of JavaBean to

allow its properties to be changed in build and execution phase. Persistence:-Is the ability of

JavaBean to save its state to disk or storage device and restore the saved state when the

JavaBean is reloaded Communication:- Is the ability of JavaBean to notify change in its

properties to other JavaBeans or the container. Introspection:-Is the ability of a JavaBean to

allow an external application to query the properties, methods, and events supported by it.

Beans Development Kit Is a development environment to create, configure, and test

JavaBeans. The features of BDK environment are:

 Provides a GUI to create, configure, and test JavaBeans.

 Enables you to modify JavaBean properties and link multiple JavaBeans in an application

using BDK.

 Provides a set of sample JavaBeans.

 Enables you to associate pre-defined events with sample JavaBeans. Identifying BDK

Components

 • Execute the run.bat file of BDK to start the BDK development environment.

The components of BDK development environment are:

1. ToolBox

2. BeanBox(Is a workspace for creating the layout of JavaBean application.)

3. Properties (Displays all the exposed properties of a JavaBean. You can modify JavaBean

properties in the properties window. The following figure shows the Properties window)

4. Method Tracer(Displays the debugging messages and method calls for a JavaBean

application.)

Steps to Develop a User-Defined JavaBean:

1. Create a directory for the new bean

2. Create the java bean source file(s)

3. Compile the source file(s)

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 159 -

4. Create a manifest file

5. Generate a JAR file

6. Start BDK

7. Load Jar file

8. Test.

16. Explain TCP/IP Client and the Various Classes and Methods Supported By Java

 for TCP/IP Client Sockets (DEC 2016)
A socket can be used to connect Java’s I/O system to other programs that may reside either

on the local machine or on any other machine on the Internet. There are two kinds of TCP

sockets in Java. One is for servers, and the other is for clients. The ServerSocket class is

designed to be a “listener,” which waits for clients to connect before doing anything. The

Socket class is designed to connect to server sockets and initiate protocol exchanges.

TCP/IP Client Sockets Here are two constructors used to create client sockets: Socket(String

hostName, int port) Creates a socket connecting the localhost to the named host and port; can

throw an UnknownHostException oran IOException. Socket(InetAddress ipAddress, int port)

Creates a socket using a preexisting InetAddress object and a port; can throw an

IOException.

A socket can be examined at any time for the address and port information associated with it,

by use of the following methods: InetAddress getInetAddress() Returns the InetAddress

associated with the Socket object. int getPort() Returns the remote port to which this Socket

object is connected. int getLocalPort() Returns the local port to which this Socket object is

connected

Once the Socket object has been created, it can also be examined to gain access to the input

and output streams associated with it.

InputStream getInputStream()

Returns the InputStream associated with the invoking socket.

OutputStream getOutputStream()

Returns the OutputStream associated with the invoking socket.

The very simple example that follows opens a connection to a whois port on the

InterNIC server, sends the command -line argument down the socket, and then prints the data

that is returned. InterNIC will try to lsookup the argument as a registered Internet domain

name, then send back the IP address and contact information for that site.

import java.net.*;

import java.io.*;

class Whois

 {

public static void main(String args[]) throws Exception

 {

int c; Socket s = new Socket("internic.net", 43);

InputStream in = s.getInputStream(); OutputStream out = s.getOutputStream();

Stringstr=(args.length==0? "osborne.com":args[0])+"n";

byte buf[] = str.getBytes(); out.write(buf);

while ((c = in.read()) != -1) System.out.print((char) c); s.close();

 }

 }

URL (Uniform Resource Locator)

 The URL (Uniform Resource Locator) provides a reasonably intelligible form to

uniquely identify or address information on the Internet. URLs are ubiquitous; every browser

uses them to identify information on the Web. In fact, the Web is really just that same old

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 160 -

Internet with all of its resources addressed as URLs plus HTML. Within Java’s network class

library, the URL class provides a simple, concise API to access information across the

Internet using URLs. Two examples of URLs are

http://www.osborne.com/ and http://www.osborne.com:80/ index.htm.

A URL specification is based on four components:

 The first is the protocol to use, separated from the rest of the locator by a colon (:). Common

protocols are http, ftp, gopher, and file, although these days almost everything is being done

via HTTP (in fact, most browsers will proceed correctly if you leave off the “http://” from

your URL specification).

 The second component is the host name or IP address of the host to use; this is delimited on

the left by double slashes (//) and on the right by a slash (/) or optionally a colon (:).

 The third component, the port number, is an optional parameter, delimited on the left from

the host name by a colon (:) and on the right by a slash (/). (It defaults to port 80, the

predefined HTTP port; thus “:80” is redundant.)

 The fourth part is the actual file path. Most HTTP servers will append a file named

index.html or index.htm to URLs that refer directly to a directory resource.

TCP/IP Server Sockets
The ServerSocket class is used to create servers that listen for either local or remote

client programs to connect to them on published ports. Since the Web is driving most of the

activity on the Internet, this section develops an operational web (http) server. ServerSockets

are quite different from normal Sockets. When you create a ServerSocket, it will register

itself with the system as having an interest in client connections.

 The constructors for ServerSocket reflect the port number that you wish to accept

connections on and, optionally, how long you want the queue for said port to be. The queue

length tells the system how many client connections it can leave pending before it should

simply refuse connections. The default is 50. The constructors might throw an IOException

under adverse conditions. Here are the constructors:

ServerSocket has a method called accept(), which is a blocking call that will wait for a client

to initiate communications, and then return with a normal Socket that is then used for

communication with the client.

Serve- Client Program in Java

Server Side Program (Server.java)

import java.io.*;

import java.net.*;

public class Server

 {

private static Socket socket; public static void main(String[] args)

{

try

{

int port = 25000;

 ServerSocket serverSocket = new ServerSocket(port);

System.out.println("Server Started and listening to the port 25000");

while(true)

 {

socket = serverSocket.accept();

 InputStream is = socket.getInputStream();

 InputStreamReader isr = new InputStreamReader(is);

 BufferedReader br = new BufferedReader(isr);

 String number = br.readLine();

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 161 -

System.out.println("Message received from client is "+number);

 String returnMessage="You are Welcome....Mr. Client";

 OutputStream os = socket.getOutputStream();

OutputStreamWriter osw = new OutputStreamWriter(os);

 BufferedWriter bw = new BufferedWriter(osw);

bw.write(returnMessage);

System.out.println("Message sent to the client is "+returnMessage);

bw.flush();

}

 }

catch (Exception e) { e.printStackTrace();

}

 Finally

 {

try

{

socket.close();

 }

catch(Exception e){} } } }

 Client Side Program (Client.java)

import java.io.*;

import java.net.*;

public class Client

{

private static Socket socket; public static void main(String args[])

{

try

 {

 String host = "localhost";

int port = 25000;

 InetAddress address = InetAddress.getByName(host);

socket = new Socket(address, port);

 OutputStream os = socket.getOutputStream();

 OutputStreamWriter osw = new OutputStreamWriter(os);

 BufferedWriter bw = new BufferedWriter(osw);

String number = "Thank You server. i am Connected !!!!!";

String sendMessage = number + "\n"; bw.write(sendMessage);

bw.flush();

System.out.println("Message sent to the server : "+sendMessage);

 InputStream is = socket.getInputStream();

 InputStreamReader isr = new InputStreamReader(is);

BufferedReader br = new BufferedReader(isr);

String message = br.readLine();

System.out.println("Message received from the server : " +message);

 }

catch (Exception exception)

{

exception.printStackTrace();

}

finally

MC5304 – Programming with JAVA MCA 2018-2019

St. Joseph’s College of Engineering - 162 -

 {

try

 {

socket.close();

 }

catch(Exception e)

 {

e.printStackTrace(); } } } }

