DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF

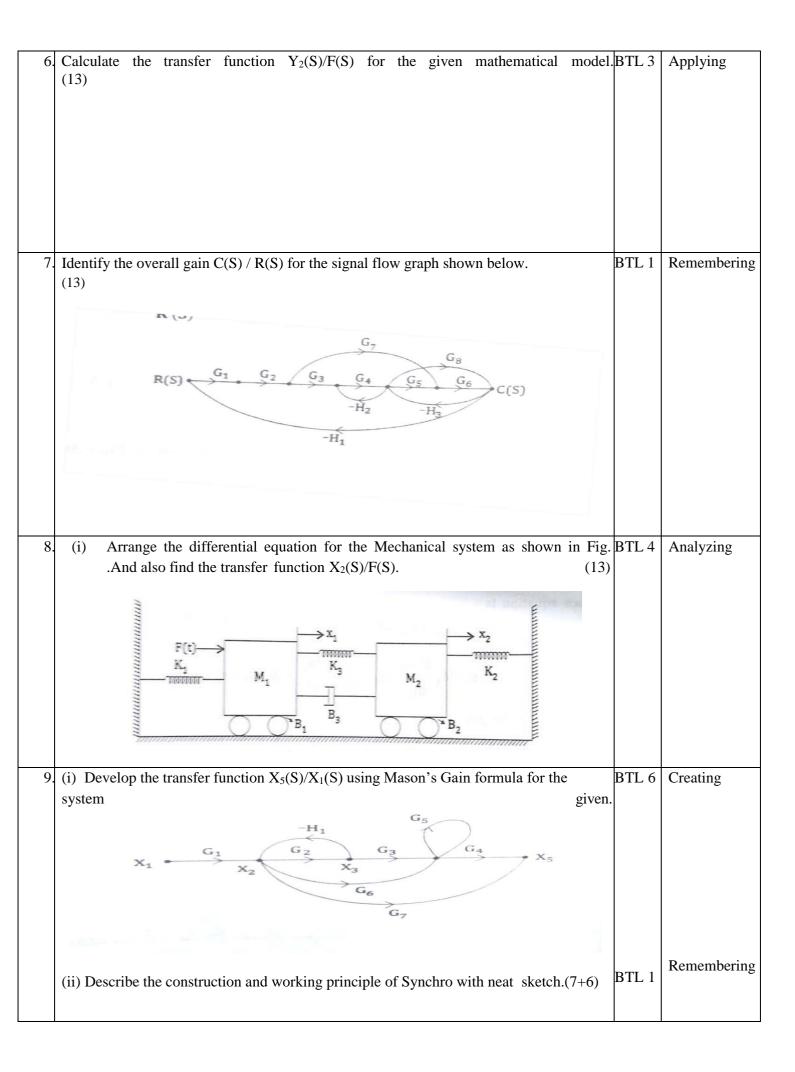
ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

V SEMESTER

IC6501 – CONTROL SYSTEMS

Regulation-2013


Academic Year 2018–19

UNIT I SYSTEMS AND THEIR REPRESENTATION

Basic elements in control systems – Open and closed loop systems – Electrical analogy of mechanical and thermal systems – Transfer function – Synchros – AC and DC Servomotors – Block diagram reduction techniques – Signal flow graphs.

PART A				
Q.No.		BTL Level	Domain	
1.	List the advantages of closed loop system over open loop system.	BTL 1	Rememberin	
2.	Define the terms (i) Physical Model (ii) Mathematical Model.	BTL 1	Rememberin	
3.	What are the basic elements in control systems?	BTL 1	Rememberin	
4.	Define transfer function. Give an example for it.	BTL 1	Rememberin	
5.	What are the basic elements used for modeling mechanical translational system?	BTL 1	Rememberin	
б.	List the basic elements for modeling in mechanical rotational system.	BTL 1	Rememberin	
7.	Distinguish the terms sink and source.	BTL 2	Understandi	
8.	Discuss any 2- applications of synchro.	BTL 2	Understandi	
9.	Describe the characteristics of negative feedback in control systems.	BTL 2	Understandi	
10.	Discuss the terms (i) Signal Flow Graph (ii) Non-touching loop.	BTL 2	Understandi	
11.	Illustrate the terms (i) Block Diagram Reduction (ii) Mason;s Signal Flow Graph Method.	BTL 3	Applying	
12.	Draw the electrical analog of a thermometer with neat diagram.	BTL 3	Applying	
13.	Illustrate the terms (i) Path (ii) Forward Path (iii) Loop (iv) Non-touching Loop.	BTL 3	Applying	
14.	Compare Signal Flow Graph approach with block diagram reduction technique of determining transfer function.	BTL 4	Analyzing	
15.	Define open loop and closed loop system.	BTL 4	Analyzing	
16.	Analyze the need of electrical zero position of a synchro transmitter.	BTL 4	Analyzing	
17.	Explain the aligned position of a Synchro transmitter and synchro receiver.	BTL 5	Evaluating	
18.	Can we use servomotor for position control? Support the answer with necessary details.	BTL 5	Evaluating	
19.	Create the expression for Masons gain formula to find the system transfer	BTL 6	Creating	

	function.			
20.	Formulate the force balance equation for ideal dash pot and ideal spring	5 •	BTL 6	Creating
	PART – B			L
closed (6)	te the differential equations governing the mechanical rotational syst	ystem.	BTL4	Analyzing
the cl	pose the given block diagram shown in fig to signal flow graph and determined by transfer function $C(s)/R(s)$. $R(s) \longrightarrow G_1(s) \longrightarrow G_2(s) \longrightarrow G_3(s) \longrightarrow C(s)$ $H_1(s) \longleftarrow H_2(s) \longleftarrow G_3(s) \longrightarrow G_3(s) \longrightarrow G_3(s)$ Differentiate DC and AC Servo Motor.	mine (8) ≯ (5)	BTL 6	Creating
. ,	in open loop and closed loop control systems with examples.)BTL 4	Analyzing
· · · ·	e the transfer function of an armature controlled DC Servo Motor.	(7)	DIL 4	Anaryzing
4. Find the	transfer function y ₂ (s) / f(s) as shown in Fig		BTL 3	Applying
			BTL 3 BTL2	Applying

10.	Formulate the transfer function for the block diagram shown in Fig	BTL 6	Creating
	(i) using the Block diagram Reduction Technique.		
	(ii) using Mason's Gain Formula.(7+6)		
	G ₃		
	$\begin{array}{c} R \\ \hline \\$		
	H_2 $+$ H_1		
	G_4		
	(i) Develop the transfer function of AC Servo Motor.	BTI 6	Creating
11.	(1) Develop the transfer function of AC Servo Motor. (7)	DILO	Creating
11.	(ii) With neat diagram, explain the working principle of Field Controlled DC Servo	BTL 5	Evaluating
	Motor. (6)		
		BTL 3	Applying
12.	(i) Illustrate the Transfer Function of Thermal system consists of a thermometer inserted in a liquid bath.(6)	DIL 3	Applying
12.			
	(ii) Compare DC Motor and DC Servo Motor and list out the applications of DC Servo Motor. (7)	BTL 4	Analyzing
	Motor. (7)	DIL 4	Anaryzing
	(i) Describe the Mathematical Modelling of fundamental component of Mechanical	BTL 1	Remembering
13.	Rotational System. (6)	BTL 1	
	(ii) Describe how a Synchro works as error detector with neat diagram. (7)		Remembering
	What is meant by Servo mechanism? Explain the construction, working	BTL 5	Evaluating
14.	and also obtain the mathematical expression for (i) DC Servo Motor (ii)		
	AC Servo Motor. (13)		
	PART – C	1	
1.	Identify and obtain the electrical current analogy for the Mechanical system	BTL 1	Remembering
	as shown in Fig. and also draw the circuit diagram. (15)		
	$K_2 \longrightarrow X_2(t) \longrightarrow X_1(t)$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2.	(i) What is meant by Synchros? Explain the following parts of Synchros (i) Syncro	BTL 5	Evaluating
	Transmitter (ii) Synchro Receiver (iii) Error detector (iv) Position Control applications		
	with suitable diagram for each. (15)		

3.	In block diagram reduction explain the following terms(i) Block diagram (ii) Error	BTL 2	Understanding
	Detector (iii) Take off Point (iv) Forward Path (v) Feedback path. And also express the		
	rules for block diagram technique with suitable tabulation. (15)		
4.	(i)Create the Mathematical Model for (i) Mechanical Translational System (ii)	BTL 6	Creating
	Mechanical Rotational System (iii) Series RLC Circuit (iv) Parallel RLC Circuit with		
	suitable diagram and expression. (15)		

	UNIT II - TIME RESPONSE		
Time r	esponse - Time domain specifications - Types of test input - I and II order system	n response	– Error
coeffic	ients – Generalized error series – Steady state error – Root locus construction- Effects	s of P, PI,	PID
modes	of feedback control – Time response analysis.		
	PART - A		
Q.No.	Questions	BT	Competence
1.	For the system described by $\frac{C(S)}{R(S)} = \frac{16}{(S^2 + 8S + 16)}$ Show the nature of the time	BTL 3	Applying
	response.		
2.	Classify the time domain specifications.	BTL 3	Applying
3.	Define Delay time, Rise time, Peak time.	BTL 1	Remembering
4.	Define Step, Ramp & Parabolic signal	BTL 1	Remembering
5.	Calculate the acceleration error coefficient for $\frac{C(S)}{R(S)} = \frac{K(1+S)(1+2S)}{S^2(S^2+4S+20)}$	BTL3	Applying
6.	Evaluate the type and order of the system. $G(S) = \frac{K}{S(TS+1)}$	BTL 5	Evaluating
7.	How is a system classified depending on the value of damping?	BTL 2	Understanding
8.	Give the type and order of the following system. $G(S)H(S) = \Box \frac{200}{(S^2 + 20S + 200)}$	BTL 2	Understanding
9.	What is steady state error? Mention the 3-different static error constants.	BTL 2	Understanding
10.	Distinguish between type and order of the system.	BTL 4	Applying
11.	List the drawback of static coefficients.	BTL 1	Remembering
12.	Give the relation between static and dynamic error coefficients.	BTL 1	Remembering
13.	Explain the need for a controller and different types of controller.	BTL 5	Evaluating
14.	State the basic properties of root locus.	BTL 1	Remembering
15.	Give the transfer function G(s) of a PID Controller.	BTL 2	Understanding

16.	What is the effect on system performance when a Proportional Controller is used in a system?.	BTL 6	Creating
17.	Infer why derivative controller is not separately used in control systems.	BTL 4	Analyzing
18.	Explain about the PI Controller.	BTL 4	Analyzing
19.	Express the PID Controller Equation.	BTL 2	Understanding
20.	Generalize the effect of PI Controller on the system performance.	BTL 6	Creating
	PART - B		
1.	i) Outline the time response of first order system when it is subjected to a unit step input. (8) ii) Determine the response of the unity feed back system whose open loop transfer function $G(S) = \frac{4}{S(S+5)}$ and when the input is unit step. (5)	BTL 2	Understanding
2.	Derive the expressions for second order system for underdamped case and when the unit is step input. (13)	BTL 1	Remembering
3.	(i) The open loop transfer function of a unity feedback system is given by $G(S) = \frac{1}{S(S+1)}$ The input to the system is described by $r(t)=4+6t$. Find the generalised error coefficient and steady state error. (6) (ii) For a unity feedback control system the open loop transfer function is given by $G(S) = \frac{10(S+2)}{S^2(S+5)}$ (a) Find the position ,velocity and acceleration error co-efficients. (b) Also find steady state error when the input is $R(S) = \frac{3}{S} - \frac{2}{S^2} + \frac{1}{3S^3}$ (7)	BTL 4	Analyzing
4.	(i) Measurements conducted on a Servomechanism show the system response to be $c(t)=1+0.2 \ e^{-60t} -1.2 \ e^{-10t}$ when subjected to a unit step. Give the expression for closed loop transfer function. (6) (ii) What is the response $c(t)$ to the unit step input. Given that $\zeta =0.5$ and also calculate rise time, peak time, Maximum overshoot and settling time. $R(S) \longrightarrow C(S) \longrightarrow C(S)$ (7)	BTL 4	Analyzing

5.	(i) The open loop transfer function of a unity feedback system is given by	BTL 3	Applying
	$G(S) = \frac{K}{S(TS+1)}$ where K and T are positive constants. By what factor		
	should the amplifier gain reduced so that the peak overshoot of unit step response of the closed loop system is reduced from 75% to 25%. (7)		
	(ii) For a closed loop system with $G(S) = \frac{1}{(1+S)}$ and $H(S) = 5$ calculate the		
	generalized error coefficients and find error. (6)		
6.	Evaluate the expression for dynamic error coefficients of the following	BTL 1	Remembering
	system $G(S) = \frac{10}{S(S+1)}$ (13)		
7.	A unity feedback system is characterised by an open loop transfer function $G(S) = \frac{K}{S(S+10)}$. Analyse and determine the gain K so that the	BTL 4	Analyzing
	system will have a damping ratio of 0.5. For this value of K determine settling time, peak overshoot and time to peak over shoot for a unit step input. (13)		
8.	Find the static error coefficients for a system whose transfer function is $G(S)H(S) = \frac{10}{S(1+S)(1+2S)}$. And also find the steady state error for r(t)=1+	BTL 5	Evaluating
	$t + t^2/2.$ (13)		
9.	Develop the time response of a typical under damped second order system for a unit step input. (13)	BTL 1	Remembering
10.	Draw the root locus of the following system. $G(S)H(S) = \frac{K}{S(S+1)(S+2))}$ (13)	BTL 6	Creating
11.	(i) Sketch the root locus of the system whose open loop transfer function is $G(S) = \frac{K}{S(S+2)(S+4)}$ Find the value of K so that damping ratio is 0.5. (7)	BTL 2	Understanding
	(ii) A unity feedback system has an amplifier with gain $K_A=10$ and gain ratio		
	$G(S) = \frac{1}{S(S+2)}$ in the feed forward path. A derivative feedback, H(S)=S K ₀		
	is introduced as a minor loop around(s).Estimate the derivative feedback		
	constant, K_0 , so that the system damping factor is 0.6. (6)		
12.	(i) Explain the rules to construct root locus of a system. (6)	BTL 2	Understanding
	(ii) With a neat diagram explain the effect of PD Controller in detail. (7)		
	(i) with a near diagram explain the critect of 1D controller in detail. (7)		

14.	(i) For a servomechanisms with open loop transfer function $G(S) = \frac{10}{S(S+2)(S+3)}$ What type of input signal gives constant steady state error and calculate its value. (7) (ii) Compute the static error coefficients for a system whose $G(S) = \frac{10}{S(1+S)(1+2S)}$ and also find the steady state error forr(t)=1+t + t ² /2.(6) PART - C	BTL 3	Applying
1		DTL 5	
1.	Evaluate the expression for dynamic error coefficients of the following system $G(S) = \frac{10}{S(1+S)}$ (15)	BTL 5	Evaluating
2.	(i) The overall transfer function of a control system is given by $\frac{C(S)}{R(S)} = \frac{16}{(S^2 + 1.6S + 16)}$ It is desired that the damping ratio is 0.8.Determine the derivative rate feedback constant Ki and compare rise time, peak time, maximum overshoot and steady state error for unit ramp input function without and with derivative feedback control. (9) (ii) Compare P,I and D Controller. (6)	BTL 4	Analyzing
3.	Draw the root locus for a system is given by $G(S) = \frac{K(S+1)}{S(S^2+5S+20)}$. (15)	BTL 6	Creating
4.	A positional control system with velocity feedback as shown in fig. Give the response of the system for unit step input. $R(S) \xrightarrow{100} C(S)$ (15)	BTL 6	Creating

UNIT III FREQUENCY RESPONSE

Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response -Correlation between frequency domain and time domain specifications- Effect of Lag, Lead and Lag-Lead compensation on Frequency response- Analysis.

	PART A					
Q.No.	Questions	BTL Level	Domain			
1.	Define the terms (i) Phase margin (ii) Gain margin (iii) Gain Cross-over frequency (iv) Phase Cross-over Frequency.	BTL 1	Remembering			
2.	Give the advantages of Frequency response analysis.	BTL 1	Remembering			

4. Define the terms: Resonant peak and Resonant frequency. BTL 1 Remembering 5. Why is frequency response analysis important in control BTL 1 Remembering 6. Define the following methods of frequency response plot. BTL 1 Remembering (i) Bode Plot (ii) Polar Plot (iii) Nyquist Plot (iv) Nichol's Chart. BTL 1 Remembering 7. What is starting and ending point of a polar plot identified for the system. Explain with suitable diagram. BTL 2 Understandin 8. Describe the different frequency domain specifications. BTL 2 Understandin 9. Mention the uses of Nichol's Chart. BTL 1 Understandin 10. Express the relationship between speed and frequency. BTL 2 Understandin 11. Draw the polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3 Applying 12. Find the corner frequency of $G(S) = \frac{10}{s(1+0.5S)}$ BTL 3 Applying 13. Draw the circuit of lead compensator and its pole zero diagram. BTL 4 Analyzing 14. Draw the approximate polar plot for a Type 0 second order system. BTL 4 Analyzing 15. Compare Lead. Lag and Lead-Lag Compensator. BTL 4 Analyzing </th <th></th> <th></th> <th></th> <th></th>				
5. Why is frequency response analysis important in control BTL 1 Remembering applications? 6. Define the following methods of frequency response plot. (i) Bode Plot (ii) Polar Plot (iii) Nichol's Chart. BTL 1 Remembering (i) Bode Plot (ii) Polar Plot (iii) Nichol's Chart. 7. What is starting and ending point of a polar plot identified for the system. Explain with suitable diagram. BTL 2 Understandin 9. Mention the uses of Nichol's Chart. BTL 1 Understandin 10. Express the relationship between speed and frequency. BTL 2 Understandin 11. Draw the polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3 Applying 12. Find the corner frequency of $G(S) = \frac{10}{S(1+0.5S)}$ BTL 3 Applying 13. Draw the circuit of lead compensator and its pole zero diagram. BTL 4 Analyzing 14. Draw the approximate polar plot for a Type 0 second order system. BTL 4 Analyzing 15. Compare Lead. Lag and Lead-Lag Compensator. BTL 4 Analyzing 17. Evaluate the Frequency domain specification of a Second order system. BTL 5 Evaluating 16. Compare the need for Lag/Lag-Lead Compensation. BTL 4 Analyzing <	3.	Identify for +20db/sec slope change in Bode Plot.	BTL 1	Remembering
applications?BTL 1Remembering6.Define the following methods of frequency response plot. (i) Bode Plot (ii) Polar Plot (iii) Nyquist Plot (iv) Nichol's Chart.BTL 1Remembering7.What is starting and ending point of a polar plot identified for the system. Explain with suitable diagram.BTL 2Understandin8.Describe the different frequency domain specifications.BTL 2Understandin9.Mention the uses of Nichol's Chart.BTL 1Understandin10.Express the relationship between speed and frequency.BTL 2Understandin11.Draw the polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3Applying12.Find the corner frequency of $G(S) = \frac{10}{s(1+0.5S)}$ BTL 3Applying13.Draw the circuit of lead compensator and its pole zero diagram.BTL 4Analyzing14.Draw the approximate polar plot for a Type 0 second order system.BTL 4Analyzing15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 5Evaluating17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{(S)^2} = \frac{64}{(S^2+10S+64)}$ BTL 6Creating18.Evaluate the term Corner frequency.BTL 6CreatingPART – BCreating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6Creating21.(i) Describe the use of Nichol's chart to obta	4.	Define the terms: Resonant peak and Resonant frequency.	BTL 1	Remembering
(i) Bode Plot (ii) Polar Plot (iii) Nyquist Plot (iv) Nichol's Chart.Image: Constraint of the starting and ending point of a polar plot identified for the system. Explain with suitable diagram.BTL 2Understanding point of a polar plot identified for the system. Explain with suitable diagram.BTL 2Understanding point of a polar plot identified for the system. Explain with suitable diagram.BTL 2Understanding point of the polar plot of a polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3Understanding polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3Applying plot plot of $G(S) = \frac{1}{S(1+0.5S)}$ BTL 3Applying plot plot of $G(S) = \frac{10}{S(1+0.5S)}$ BTL 3Applying plot plot plot of $G(S) = \frac{10}{S(1+0.5S)}$ BTL 3Applying plot plot plot of a Type 0 second order system.BTL 3Applying plot plot plot of a Type 0 second order system.BTL 4Analyzing plot plot plot plot for a Type 0 second order system.BTL 4Analyzing plot plot plot plot plot for a Type 0 second order system.BTL 5Evaluating plot plot plot plot plot plot plot plot	5.		BTL 1	Remembering
system. Explain with suitable diagram.8.Describe the different frequency domain specifications.BTL 2Understandin9.Mention the uses of Nichol's Chart.BTLUnderstandin10.Express the relationship between speed and frequency.BTL 2Understandin11.Draw the polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3Applying12.Find the corner frequency of $G(S) = \frac{10}{S(1+0.5S)}$ BTL 3Applying13.Draw the circuit of lead compensator and its pole zero diagram.BTL 3Analyzing14.Draw the approximate polar plot for a Type 0 second order system.BTL 4Analyzing15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{(S)^2 + 10S + 64)}$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 6Creating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Frequency.BTL 6Creating1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 11.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unity<	6.		BTL 1	Remembering
9.Mention the uses of Nichol's Chart.BTLUnderstandin10.Express the relationship between speed and frequency.BTL 2Understandin11.Draw the polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3Applying12.Find the corner frequency of $G(S) = \frac{10}{S(1+0.5S)}$ BTL 3Applying13.Draw the circuit of lead compensator and its pole zero diagram.BTL 3Analyzing14.Draw the approximate polar plot for a Type 0 second order system.BTL 4Analyzing15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{R(S)} = \frac{-64}{(S^2 + 10S + 64)}$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6Creating1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response of a unity frequency response from open loop frequency response of a unityBTL 1Remembering	7.		BTL 2	Understanding
10.Express the relationship between speed and frequency.BTL 2Understandin11.Draw the polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3Applying12.Find the corner frequency of $G(S) = \frac{10}{S(1+0.5S)}$ BTL 3Applying13.Draw the circuit of lead compensator and its pole zero diagram.BTL 3Analyzing14.Draw the approximate polar plot for a Type 0 second order system.BTL 3Applying15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order systemBTL 5Evaluating18.Evaluate the Frequency domain specification is given by $\frac{C(S)}{(S^2 + 10S + 64)}$ BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6Creating1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 1Remembering	8.	Describe the different frequency domain specifications.	BTL 2	Understanding
11111111111.Draw the polar plot of $G(S) = \frac{1}{(1+TS)}$ BTL 3Applying12.Find the corner frequency of $G(S) = \frac{10}{S(1+0.5S)}$ BTL 3Applying13.Draw the circuit of lead compensator and its pole zero diagram.BTL 3Analyzing14.Draw the approximate polar plot for a Type 0 second order system.BTL 3Applying15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{(S^2 + 10S + 64)}$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6CreatingPART - B1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response of a unityBTL 1Remembering	9.	Mention the uses of Nichol's Chart.	BTL	Understanding
12.Find the corner frequency of $G(S) = \frac{10}{S(1+0.5S)}$ BTL 3Applying13.Draw the circuit of lead compensator and its pole zero diagram.BTL 3Analyzing14.Draw the approximate polar plot for a Type 0 second order system.BTL 3Applying15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{R(S)} = 64$ $R(S) = 64$ $R(S) = 10S + 64$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Frequency.BTL 6Creating1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 1Remembering	10.	Express the relationship between speed and frequency.	BTL 2	Understanding
13.Draw the circuit of lead compensator and its pole zero diagram.BTL 3Analyzing14.Draw the approximate polar plot for a Type 0 second order system.BTL 3Applying15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{R(S)} = \begin{bmatrix} 64\\ (S^2 + 10S + 64) \end{bmatrix}$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6CreatingPART – B1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 1Remembering	11.		BTL 3	Applying
14.Draw the approximate polar plot for a Type 0 second order system.BTL 3Applying15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{R(S)} = 64$ $R(S) = (S^2 + 10S + 64)$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6Creating1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 1Remembering	12.	Find the corner frequency of $G(S) = \frac{10}{S(1+0.5S)}$	BTL 3	Applying
15.Compare Lead. Lag and Lead-Lag Compensator with suitable example.BTL 4Analyzing16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{R(S)} = \frac{64}{(S^2 + 10S + 64)}$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Frequency.BTL 6CreatingCreatingPART - B1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 1Remembering	13.	Draw the circuit of lead compensator and its pole zero diagram.	BTL 3	Analyzing
InterfaceInterfaceInterfaceexample.InterfaceInterface16.Compare the need for Lag/Lag-Lead Compensation.BTL 4Analyzing17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{R(S)} = _64$ $\frac{G^2 + 10S + 64}$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6CreatingPART - B1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 1Remembering	14.	Draw the approximate polar plot for a Type 0 second order system.	BTL 3	Applying
17.Evaluate the Frequency domain specification of a Second order system when closed loop transfer function is given by $\frac{C(S)}{R(S)} = \frac{64}{(S^2 + 10S + 64)}$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6CreatingPART – B1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 1Remembering	15.		BTL 4	Analyzing
system when closed loop transfer function is given by $\frac{C(S)}{R(S)} = \frac{64}{(S^2 + 10S + 64)}$ BTL 5Evaluating18.Evaluate the term Corner frequency.BTL 5Evaluating19.Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system.BTL 6Creating20.Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency.BTL 6CreatingPART - B1.(i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unityBTL 1Remembering	16.	Compare the need for Lag/Lag-Lead Compensation.	BTL 4	Analyzing
19. Create the suitable diagram for the (i) Starting Point (ii) Ending point of Polar Plot for identify the system. BTL 6 Creating 20. Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency. BTL 6 Creating PART – B 1. (i) Describe the use of Nichol's chart to obtain closed loop frequency response of a unity BTL 1 Remembering	17.	system when closed loop transfer function is given by	BTL 5	Evaluating
point of Polar Plot for identify the system. Image: Constraint of the system. 20. Formulate the expression for (i) Resonant Peak (ii) Resonant Frequency. BTL 6 PART – B 1. (i) Describe the use of Nichol's chart to obtain closed loop frequency response of a unity BTL 1 Remembering	18.	Evaluate the term Corner frequency.	BTL 5	Evaluating
Frequency. PART – B 1. (i) Describe the use of Nichol's chart to obtain closed loop frequency response from open loop frequency response of a unity BTL 1	19.		BTL 6	Creating
1. (i) Describe the use of Nichol's chart to obtain closed loop BTL 1 Remembering frequency response from open loop frequency response of a unity BTL 1 Remembering	20.		BTL 6	Creating
frequency response from open loop frequency response of a unity		PART – B		1
	1.	frequency response from open loop frequency response of a unity	BTL 1	Remembering

	(ii) Describe the correlations between time and frequency domain		
	specifications. (6)		
2.	With Mathematical expression define the following Frequency	BTL 1	Remembering
	Domain specifications (i) Gain Margin (ii) Phase Margin (iii) Gain		
	Cross over Frequency (iv) Phase Cross over Frequency (v)		
	Resonant Peak (vi) Resonant Frequency (vii) Bandwidth. (13)		
3.	Draw and show the Bode plot for the open loop transfer function	BTL 3	Applying
	of a unity feedback system $G(S) = \frac{10(S+3)}{S(S+2)(S^2+3S+25)}$ and		
	Determine : (i) Gain Margin (ii) Phase Margin (iii) Gain Cross		
	Over Frequency (iv) Phase Cross Over Frequency. (13)		
4.	The Open Loop Transfer Function $G(S) = \frac{K}{S(1+0.5S)(1+4S)}$	BTL 3	Applying
	Determine the values manually calculate (i) Gain Margin (ii)		
	Phase Margin (iii) Gain Cross Over Frequency (iv) Phase Cross		
	Over Frequency(v) Stability range K. (13)		
5.	What is meant by Compensator? Summarize the following effects	BTL 2	Understanding
	of compensator (i) Lead Compensator (ii) Lag Compensator (iii)		
	Lead-Lag Compensator withy suitable transfer function. (13)		
6.	Sketch the Bode plot and hence find Gain cross over frequency,	BTL 3	Applying
	Phase cross over frequency, Gain margin and Phase margin for the		
	function $G(S) = \frac{10(S+3)}{S(S+2)(S^2+4S+100)}$ (13)		
	$S(S+2)(S^2+4S+100)$		
7.	Develop the Bode plot for the open loop transfer function of a	BTL 6	Creating
	unity feedback system $G(S) = \frac{10}{S(S+2)(S+6)}$ and Determine: (i)		
	Gain Margin (ii) Phase Margin (iii) Gain Cross Over Frequency		
	(iv) Phase Cross Over Frequency. (13)		
8.	Draw and show the polar plot of the system open loop transfer	BTL 3	Applying
	function with unity feedback system given by		
	$G(S) = \frac{10}{S(S+1)(S+4)}$ Determine the phase and gain margin. (13)		
9.	The given transfer function $\frac{C(S)}{R(S)} = \frac{10(S+2)}{(S^2+4S+5)}$. Evaluate (i)	BTL 5	Evaluating
	Magnitude (ii) Phase Angle (iii) Band width. (13)		

10.	The Open Loop Transfer Function $G(S) = \frac{K}{(S+1)^3}$. Determine and	BTL 3	Applying
	Calculate the (i) Gain Margin (ii) Phase Margin (iii) Gain Cross		
	Over Frequency (iv) Phase Cross Over Frequency (v) Stability		
	range K. (13)		
11.	Draw the Polar plot for the open loop transfer function of a unity	BTL 4	Analyzing
	feedback system $G(S) = \frac{10(S+3)}{S(S+2)(S^2+3S+25)}$ and Determine and		
	Point out : (i) Gain Margin (ii) Phase Margin (iii) Stability. (13)		
12.	Write the Estimation Procedure for Polar Plot and obtaining (i)	BTL 4	Analyzing
	Gain Margin (ii) Phase Margin. And also point out the stability of		
	the system. (13)		
13.	Sketch the polar plot for the following transfer function and find	BTL 5	Evaluating
	Gain cross over frequency, Phase cross over frequency, Gain margin 400		
	and Phase margin for $G(S) = \frac{400}{S(S+2)(S+10)}$ (13)		
14.	The Second Order System has the closed loop transfer function	BTL 3	Applying
	$\frac{C(S)}{R(S)} = \frac{8}{(S^2 + 4S + 8)}$. Calculate the following Frequency Domain		
	specifications (i) Resonant Peak (ii) Resonant Frequency (iii)		
	Bandwidth. (13)		
	PART C		
1.	(i) Evaluate the expression for(i) Resonant Peak (ii) Resonant	BTL 5	Evaluating
	Frequency (iii) Bandwidth. (8)		
	(ii) Obtain the expression for the correlation between time domain		
	and frequency domain analysis. (7)		
2.	Develop the Polar plot sketch approximation manually and also	BTL 6	Creating
	write the expression for each (i)Type 0 and Order 1 (ii) Type 1		
	and Order 2 (iii)Type 2 and Order 4 (iv)Type 2 and Order 5. (15)		
3.	Construct Polar plot for the system $G(S) = \frac{5(S+10)}{S(S+2)(S+6)}$ whose	BTL 3	Applying
	open loop transfer function is given below and Calculate (i)Gain		
	margin (ii) Phase Margin (iii) Gain Cross-over Frequency (iv)		

	Phase Cross over Frequency (v) Stability.(15)		
4.	(i) Evaluate the correlations between time and frequency domain	BTL 5	Evaluating
	specifications. (7)		
	(ii) With Mathematical expression define the following Frequency	BTL 1	Remembering
	Domain specifications (i) Gain Margin (ii) Phase Margin (iii) Gain		
	Cross over Frequency (iv) Phase Cross over Frequency. (8)		

UNIT IV - STABILITY AND COMPENSATOR DESIGN

Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots.

	PART - A		
Q.No	Questions	BT Level	Competenc
1.	Illustrate Nyquist stability criterion. And also write the	BTL 3	Applying
	formula for stability analysis		
2.	Define BIBO Stability.	BTL 1	Remembering
3.	Express Routh's Hurwitz criterion.	BTL 2	Understanding
4.	How are the roots of the characteristic equation of a	BTL 2	Understanding
	system related to stability?		
5.	Solve and find the range of K for closed loop stable	BTL 3	Applying
	behaviour of the system with characteristic equation		
	$4S^4+24S^3+44S^2+24S+K$ using Routh Hurwitz stability		
	criterion.		
6.	Point out the techniques used for determination of closed	BTL 4	Analyzing
	loop response from open loop response.		
7.	What are two motions of system stability to be satisfied	BTL 2	Understanding
	for a linear time-invariant system to be stable?		
8.	Judge what is dominant pole.	BTL 5	Evaluating
9.	State the necessary and sufficient condition for stability.	BTL 4	Analyzing
10.	What is characteristic equation?	BTL 1	Remembering
11.	List the advantages and disadvantages of phase lag	BTL-1	Remembering
	network.		
12.	Summarize the effect of adding open loop poles and zero	BTL 5	Evaluating
	on the nature of the root locus and on system?		
13.	Define compensator and list the types of compensators.	BTL 1	Remembering

14.	Quote the need of compensator	BTL 1	Remembering
15.	Formulate the transfer function of lag compensator and	BTL 6	Creating
15.		DILO	Creating
16.	draw the electric lag network and its pole-zero plot.Point out the properties of Lag compensator	BTL 4	Analyzing
10.	Tome out the properties of Eug compensator	212 .	7 mary 2mg
17.	What is meant by Lead compensator? Give example for	BTL 2	Understanding
	it.		
18.	Formulate the transfer function of lead compensator and	BTL 6	Creating
	draw and show pole-zero plot.		
19.	Differentiate between Gain margin and Phase margin.	BTL 3	Applying
20.	Define the terms (i) Asymptotic stable (ii) Marginally	BTL 1	Remembering
	stable.		
	PART - B		
1.	Construct Routh's array and estimate the stability		
	analysis of the system represented by the characteristic	BTL 2	Understanding
	equation and comment on the location of roots.	5122	Onderstanding
	(i) $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 5 = 0$ (6)		
	$_{(ii)}s^7 + 5s^6 + 9s^5 + 9s^4 + 4s^3 + 20s^2 + 36s + 36 = 0_{(7)}$		
2.	(ii) (ii) (ii) (ii) Use R-H criterion to determine the location of the		
2.	roots and stability for the system represented by		
	characteristic equation	BTL 2	Understanding
	$s^{8} + 4s^{4} + 8s^{8} + 8s^{2} + 7s + 4 = 0$ (6)		
	. (0)		
	(ii) Write the procedure for the design of Lag compensator		
	using Bode plot. (7)		
3.	(i) Obtain Routh's array for the system whose		
	characteristic polynomial equation is $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$	BTL 1	Remembering
	$5^{\circ} + 25^{\circ} + 65^{\circ} + 125^{\circ} + 205^{\circ} + 165 + 16 = 0$		6
	Test the stability. (6)		
	(ii) Define Nyquist stability criterion and explain the		
	different situations of it. (7)		
4.	Draw the Nyquist plot for the system whose open loop		Understanding
	transfer function $G(S)H(S) = \frac{K}{S(S+2)(S+10)}$	BTL 2	
	Determine the range of K for which closed loop system		
	is stable. (13)		
5.	Determine the stability of closed loop system by Nyquist stability criterion, whose open loop transfer function is		
	stability criterion, whose open loop transfer function is given by, $G(S)H(S) = \frac{S+2}{2}$ (13)	BTL-1	Remembering
	given by, $G(S)H(S) = \frac{S+2}{(S+1)(S-1)}$ (13)		

6.	Use the routh stability criterion, determine the range of K		
	for stability of unity feedback system whose open loop transfer function is $G(S) = \frac{K}{S(S+1)(S+2)}$. (10)	BTL-4	Analyzing
	(ii)State Routh stability criterion, If the system is conditionally stable, solve and point out the range of K for which the system is stable.(3)		
7.	(i) Test the stability for the system with characteristic equation $s^3 + 5s^2 + 6s + 30 = 0$ using Routh's Hurwitz. (6) (ii) Construct Routh's array and point out the stability of the system whose characteristic equation is $s^6 + 2s^8 + 8s^4 + 12s^3205s^2 + 16s + 16 = 0$. (7)	BTL-5	Evaluating
8.	The open loop transfer function of the uncompensated system is $G(S) = \frac{5}{S(S+2)}$. Design a suitable compensator for the system so that the static velocity error constant K _v is 20sec ⁻¹ , the phase margin is atleast 55 ⁰ and the gain margin is atleast 12dB. (13)	BTL-4	Analyzing
9.	(i) Describe the procedure for designing of a lag compensator.(6)(ii) Describe the procedure for designing of a lag-lead compensator.(7)	BTL-1	Remembeing
10.	Design a Phase Lead compensator for the unity feedback transfer function $G(S) = \frac{K}{S(S+2)}$ has specifications : a. Phase Margin $\geq 55^{\circ}$ b. The steady state error for ramp input is less than or equal to 0.33 and illustrate whether the design is acceptable or not. (Assume K=1). (13)	BTL-3	Applying
11.	Design a Lead compensator for the unity feedback transfer function with open loop transfer function $G(S) = \frac{K}{S(S+1)(S+5)}$ to satisfy the following specifications: a. $K_{v} \ge 50$. Phase Margin $\ge 20^{\circ}$. Illustrate whether the design is acceptable or not. (13)	BTL-3	Appling
12.	Design a Phase Lag compensator for the unity feedback transfer function $G(S) = \frac{5}{S(S+1)(S+4)}$ has specifications a. Phase Margin $\geq 40^{\circ}$ b. The steady state error for ramp input is less than or equal to 0.2 and check whether the design is acceptable or not. (13)	BTL-6	Creating

13.	Explain the procedure of Lag Compensator using bode		
	plot with an example. (13)	BTL-1	Remembering
14.	 (i) Explain the different types of compensation techniques. (6) (ii) A unity feedback system has the open loop transfer 	BTL-4	Analyzing
	function $G(S) = \frac{K}{S(S+2)}$. Design and Point out a lead		
	compensator for the system to achieve the following		
	specifications Velocity error constant $K_{v\!\geq}$ 12 ${\rm sec}^{-1}$,		
	Phase Margin $\geq 45^{\circ}$. (7)		
	PART - C		
1.	The open loop transfer function of a unity feedbackcontrolsystemusystem	BTL-4	Analyzing
	$G(S) = \frac{K}{(S+2)(S+4)(S^2+6S+25)}$ By applying Routh		·
	criterion, discuss the stability of the closed loop system		
	as a function of K. Determine the values of K which will		
	cause sustained oscillations in the closed loop system. What are the corresponding oscillation frequencies? (13)		
2.	For a given system $G(S) = \frac{K}{S(S+1)(S+2)}$ Design a	BTL-6	Cuesting
	suitable lag-lead compensator to give Velocity error	DIL-0	Creating
	constant $K_v=10 \text{ sec}^{-1}$, Phase Margin $\geq 50^0$, Gain margin		
	\geq 10dB. (15)		
3.	Realize the basic compensators using electrical network		
	and obtain the transfer function, (15)	BTL-6	Creating
4.	Construct the Nyquist plot for the system whose open loop transfer function is given by $G(S) = \frac{K(1+S)^2}{S^3}$. Find	BTL-6	Creating
	the range of K for stability. (15)		

UNIT V STATE VARIABLE ANALYSIS

Concept of state variables – State models for linear and time invariant Systems – Solution of state and output equation in controllable canonical form – Concepts of controllability and observability – Effect of state feedback.

PART A			
Q.No.	Questions	BTL Level	Domain
1.	Point out the drawbacks in transfer function model analysis.	BTL 4	Analyzing

2.	The given state space model	BTL 4	Analyzing
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Point out whether the given is controllable.		
3.	Give the general form of the state space model for continuous system and also draw the state diagram.	BTL 2	Understanding
4.	Define the following terms such as (i) State (ii) State Variable (iii) State Vector (iv) State Space Model.	BTL 1	Remembering
5.	What is the state transition matrix? List any two methods for finding state transition matrix.	BTL 1	Remembering
6.	Formulate the state space model with state diagram for observable canonical form.	BTL 6	Creating
7.	Consider a system whose transfer function is given by Y(S)/U(S) = $10(S+1)/S^3+6s^2+5s+10$. Solve and obtain a state model for this system.	BTL 3	Applying
8.	Obtain the state space model for the given differential equation $\frac{d^{3}Y}{dt^{2}} + 6\frac{d^{2}Y}{dt^{2}} + 11\frac{dY}{dt} + 6Y = U(t)$ Evaluate the transfer function model.	BTL 5	Evaluating
9.	Consider a system whose transfer function is given by Y(S)/U(S) = $10(S+1)/S^3+6s^2+5s+10$ Evaluate the state model for the system.	BTL 5	Evaluating
10.	Express the homogeneous and non homogeneous state equation.	BTL 2	Understanding
11.	List the advantages of state space analysis.	BTL 1	Remembering
12.	Illustrate the condition for Controllability and Observability by Kalman's method.	BTL 3	Applying
13.	Express the necessary condition to be satisfied for the design of state observer? Also Write the Ackermann's formula to find the state observer gain matrix,G.	BTL 2	Understanding
14.	Write and explain the Formula in which the general form of state	BTL 4	Analyzing

	space model into transfer functional approach.		
15		DTI 2	Amulaina
15.	Illustrate Cayley-Hamilton theorem.	BTL 3	Applying
16.	Define state trajectory.	BTL 1	Remembering
17.	Define (i) Controllability of a system. (ii) Observability of the system.	BTL 1	Remembering
18.	Express any 2-methods for the conversion of transfer functional model into state space model.	BTL 2	Understanding
19.	Formulate the state space model with state diagram for controllable canonical form.	BTL 6	Creating
20.	List the applications of state space model for the different system.	BTL 1	Remembering
	PART – B		
1.	Obtain and examine the state model of the following electrical system. (13) $ \begin{array}{c} $	BTL 1	Remembering
2.	Obtain and examine the state space model for the mechanical system as shown in Fig Where u(t) is input and y(t) is output. Also derive the transfer function from the state space equations.	BTL 1	Remembering
3.	The given state space model of the system $\begin{array}{cccccccccccccccccccccccccccccccccccc$	BTL 4	Analyzing

4.	Consider a system with state space model is given below.	BTL 4	Analyzing
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Point out that the system is observable and controllable. (13)		
5.	Consider the state space model described by $\dot{X}(t) = AX(t)$ Y(t) = CX(t)	BTL 2	Understanding
	A = $\begin{array}{ccc} \gamma - 1 & 1 \\ -1 & -2 \\ \leq \end{array}$ C=[1 0]. Design and express a full-order state		
	observer. The desired Eigen values for the observer matrix		
	$\mu_1 = -5; \ \mu_2 = -5. \tag{13}$		
6.	Examine and convert the following transfer function for the state space model $ \begin{array}{c} \begin{array}{c} Y \cdot / & & \\ \frac{x^{1}}{2} \frac{\infty}{2} & \frac{y^{1}}{2} \frac{\infty}{2} & \frac{y^{1}}{2} \frac{0}{2} & \frac{y^{1}}{2} \frac{y^{1}}{2} \frac{x^{1}}{2} \frac{x^{1}}{2} & \frac{y^{2}}{2} \frac{y^{2}}{2} \frac{y^{2}}{2} & \frac{y^{2}}{2} \frac{y^{2}}{2} \frac{y^{2}}{2} & \frac{y^{2}}{2} \frac{y^{2}}{2} \frac{y^{2}}{2} & \frac{y^{2}}{2} \frac{y^{2}}{2} \frac{y^{2}}{2} & \frac{y^{2}}{2} \frac{y^{2}}{2} \frac{y^{2}}{2} \frac{y^{2}}{2} \frac{y^{2}}{2} & \frac{y^{2}}{2} \frac{y^{2}}{2$	BTL 1	Remembering
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
7.	Explain the concept of controllability and observability by	BTL 2	Understanding
	Kalman's and Gilbert's method . (13)		
8.	Solve and Calculate the value of state transition matrix or e ^{At} by	BTL 3	Applying
	using (a) Laplace Transform Method (b) Cayley Hamilton's		
	Theorem(c)A ¹⁰ in which $A = \begin{array}{c} \Upsilon & 0 & 1/\\ -12 & 7 \\ \leq \end{array} $ (13)		
9.	Determine the canonical state model of the system whose transfer	BTL 4	Analyzing
	function $T(S) = \frac{2(S+50)}{(S+2)(S+3)(S+4)}$ (13)		
10.	Consider a system whose transfer function is given by	BTL 5	Evaluating
	$\frac{Y(S)}{U(S)} = \frac{10(S+1)}{(S^3 + 6S^2 + 5S + 10)}$ Evaluate the state model for the		
	system (i) by Block diagram reduction (ii) Signal flow graph		
	Method. (13)		
11.	Formulate the expression for the state space model for the	BTL 6	Creating

	continuous system and also draw the state diagram for it. (13)		
12.	Obtain the complete solution of non homogeneous state equation	BTL 6	Creating
	using time domain method. (13)		
13.	Obtain the following state space Model $\begin{array}{cccccccccccccccccccccccccccccccccccc$	BTL 3	Applying
	space model into canonical form state space model. And also		
	calculate the value of state transition matrix. (13)		
14.	With the case study Summarize (i) Armature control of DC Motor	BTL 2	Understandin
	(ii) Field Control of DC Motor. And also draw the (i) Block		
	diagram(ii) State diagram and state space model for the system.(13)		
	PART – C	1	1
1.	The state space model $\begin{array}{c} \begin{array}{c} \gamma \cdot \gamma & & \gamma \cdot \gamma \\ & \gamma \cdot \gamma & & \gamma \cdot \gamma & & \gamma \cdot \gamma \cdot \gamma \cdot \gamma \cdot \gamma$	BTL 5	Evaluating
	desired poles are S=-2+4j,-2-j4,-1.0 with state feedback control law U=KX. Estimate the state feedback gain matrix K. (15)		
2.	Develop the expression of (i) Controllability (ii) Observability	BTL 6	Creating
	concept by the following methods (i) Gilbert's Method (ii) Kalman's		
2	Method. (15)		
3.	The state space model for the system is given $\begin{array}{cccccccccccccccccccccccccccccccccccc$	BTL 3	Applying
	illustrate whether the given system is controllable and observable		
4.	by any one of the method and check the duality of the system. (15) Consider a linear system described by the following transfer function, $\frac{Y(S)}{U(S)} = \frac{10}{S(S+1)(S+2)}$. Design a feedback controller with	BTL 5	Evaluating
	a state feedback so that the closed loop poles are placed at		
	$-2, -1 \pm j1.$ (15)		